\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure on dendroidal sets} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{overview}{Overview}\dotfill \pageref*{overview} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{special_morphisms}{Special morphisms}\dotfill \pageref*{special_morphisms} \linebreak \noindent\hyperlink{the_model_structure}{The model structure}\dotfill \pageref*{the_model_structure} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{establishing_the_model_structure}{Establishing the model structure}\dotfill \pageref*{establishing_the_model_structure} \linebreak \noindent\hyperlink{StatementOfTheModelStructure}{Statement}\dotfill \pageref*{StatementOfTheModelStructure} \linebreak \noindent\hyperlink{ProofOfTheModelStructure}{Proof}\dotfill \pageref*{ProofOfTheModelStructure} \linebreak \noindent\hyperlink{CharacterizationOfTheFibrantObjects}{Characterization of the fibrations}\dotfill \pageref*{CharacterizationOfTheFibrantObjects} \linebreak \noindent\hyperlink{MonoidalModelCategoryStructure}{Monoidal model category structure}\dotfill \pageref*{MonoidalModelCategoryStructure} \linebreak \noindent\hyperlink{Enrichment}{Other enrichments of the underlying category}\dotfill \pageref*{Enrichment} \linebreak \noindent\hyperlink{relation_to_other_model_structures}{Relation to other model structures}\dotfill \pageref*{relation_to_other_model_structures} \linebreak \noindent\hyperlink{model_structure_for_quasicategories}{Model structure for quasi-categories}\dotfill \pageref*{model_structure_for_quasicategories} \linebreak \noindent\hyperlink{RelationToModelStructureForDendroidalCompleteSegal}{Model structure for dendroidal complete Segal spaces}\dotfill \pageref*{RelationToModelStructureForDendroidalCompleteSegal} \linebreak \noindent\hyperlink{RelationToModelStrictureOnSimplicialOperads}{Model structure on simplicial operads}\dotfill \pageref*{RelationToModelStrictureOnSimplicialOperads} \linebreak \noindent\hyperlink{model_structure_on_operads}{Model structure on $Set$-Operads}\dotfill \pageref*{model_structure_on_operads} \linebreak \noindent\hyperlink{model_structure_for_symmetric_monoidal_categories}{Model structure for symmetric monoidal $(\infty,1)$-categories}\dotfill \pageref*{model_structure_for_symmetric_monoidal_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[Denis-Charles Cisinski|Cisinski]]--[[Ieke Moerdijk|Moerdijk]] [[model category]] structure on the [[category]] [[dSet]] of [[dendroidal sets]] models [[(∞,1)-operads]] in generalization of the way the [[Andre Joyal|Joyal]] [[model structure on simplicial sets]] models [[(∞,1)-category|(∞,1)-categories]]. \hypertarget{overview}{}\subsection*{{Overview}}\label{overview} We have the following diagram of [[model category|model categories]]: \begin{displaymath} \itexarray{ SSet\text{-}Operad &\stackrel{\simeq}{\to}& dSet &\stackrel{\simeq}{\to}& dSpaces &&&&& models\;for\;(\infty,1)\text{-}operads \\ \uparrow && \uparrow && \uparrow \\ SSet\text{-}Cat &\stackrel{\simeq}{\to}& sSet &\stackrel{\simeq}{\to}& sSpaces &&&&& models\;for\;(\infty,1)\text{-}categories } \,, \end{displaymath} where the entries are \begin{itemize}% \item the category $SSet Cat$ of [[simplicially enriched category|simplicially enriched categories]] equipped with the [[Julie Bergner|Bergner]] model structure; \item the category [[SSet]] of [[simplicial set]]s equipped with the [[model structure on simplicial sets|Joyal model structure]] for [[quasi-category|quasi-categories]]; \item the category $dSet$ of [[dendroidal set]]s \end{itemize} and where \begin{itemize}% \item the horizontal morphisms are [[Quillen equivalence]]s \item the vertical morphisms are [[reflective sub-(infinity,1)-category|homotopy full embeddings]]. \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{special_morphisms}{}\subsubsection*{{Special morphisms}}\label{special_morphisms} Recall from the entry on [[dendroidal set]]s the definition of inner and outer faces, boundaries and inner and outer horns. The following definition are the obvious generalizations of the corresponding notions for the [[model structure on simplicial sets]], in particular for the [[model structure for quasi-categories]]. \begin{defn} \label{InnerAnodyneExtension}\hypertarget{InnerAnodyneExtension}{} The class of morphisms in $dSet$ generated from the inner horn inclusions $\Lambda^e \Omega[T] \to \Omega[T]$ under \begin{itemize}% \item [[pushout]] \item [[transfinite composition]] \item [[retract]]s \end{itemize} is called the \textbf{inner [[anodyne extensions]]}. \end{defn} \begin{defn} \label{NormalMonomorphism}\hypertarget{NormalMonomorphism}{} The class of morphisms in $dSet$ generated from boundary inclusions $\delta \Omega[T] \to \Omega[T]$ under \begin{itemize}% \item [[pushout]] \item [[transfinite composition]] \item [[retracts]] \end{itemize} is called the \textbf{\href{http://ncatlab.org/nlab/show/dendroidal%20set#NormalMonomorphisms}{normal monomorphisms}}. \end{defn} \begin{defn} \label{}\hypertarget{}{} A [[morphism]] $A \to B$ in $dSet$ is an \textbf{inner Kan fibration} if it has the [[right lifting property]] with respect to all inner horn inclusions. \begin{displaymath} \itexarray{ \Lambda^e[T] &\to& A \\ \downarrow && \downarrow \\ \Omega[T] &\to& B } \end{displaymath} or equivalently with respect to the class of inner anodyne extensions. \end{defn} \begin{defn} \label{QuasiOperad}\hypertarget{QuasiOperad}{} A dendroidal set $X$ is an \textbf{inner Kan complex} or \textbf{quasi-operad} if the canonical morphism $X\to {*}$ to the [[terminal object]] is an inner Kan fibration. \end{defn} \begin{defn} \label{}\hypertarget{}{} A morphism $A \to B$ of dendroidal sets is an \textbf{acyclic fibration} if it has the [[right lifting property]] with respect to all normal monomorphisms. \end{defn} \begin{defn} \label{Isofibration}\hypertarget{Isofibration}{} A morphism $f : X \to Y$ of dendroidal sets is called an \textbf{isofibration} if it \begin{enumerate}% \item it is an inner Kan fibration; \item the morphism of operads $\tau_d(f) : \tau_d(X) \to \tau_d(Y)$ is a fibration in the [[canonical model structure on operads]], hence the underlying [[functor]] of categories is an [[isofibration]]. \end{enumerate} \end{defn} \hypertarget{the_model_structure}{}\subsubsection*{{The model structure}}\label{the_model_structure} \begin{defn} \label{ModelStructureOnDendroidalSets}\hypertarget{ModelStructureOnDendroidalSets}{} On the category of [[dendroidal sets]] let \begin{itemize}% \item the cofibrations be the \hyperlink{NormalMonomorphism}{normal monomorphisms}; \item the fibrant objects are the weak Kan complexes/\hyperlink{QuasiOperad}{quasi-operads}; \item the fibrations between fibrant objects are precisely the \hyperlink{Isofibration}{isofibrations}. \item the weak equivalences form the smallest class of maps that satisfy \begin{itemize}% \item [[category with weak equivalences|2-out-of-3]] \item every \hyperlink{InnerAnodyneExtension}{inner anodyne extension} is a weak equivalence \item every acyclic fibration between quasi-operads is a weak equivalence. \end{itemize} \end{itemize} \end{defn} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{establishing_the_model_structure}{}\subsubsection*{{Establishing the model structure}}\label{establishing_the_model_structure} \hypertarget{StatementOfTheModelStructure}{}\paragraph*{{Statement}}\label{StatementOfTheModelStructure} \begin{theorem} \label{TheModelStructureExistenceAndBasicProperties}\hypertarget{TheModelStructureExistenceAndBasicProperties}{} The above choices of cofibrations, fibrations and weak equivalences equips the category $dSet$ of dendroidal sets with the structure of a [[model category]] $dSet_{CM}$. This model structure is \begin{itemize}% \item a left [[proper model category]] \item a [[cofibrantly generated model category]] \item a [[combinatorial model category]] \item a [[symmetric monoidal category|symmetric]] [[monoidal model category]] (with respect to the \href{http://ncatlab.org/nlab/show/dendroidal%20set#BoardmanVogtTensorProduct}{Boardman-Vogt tensor product}). \end{itemize} \end{theorem} This is (\hyperlink{CisinskiMoerdijk09}{Cisinski Moerdijk, theorem 2.4 and prop. 2.6}). We indicate the proof \hyperlink{ProofOfTheModelStructure}{below}. \begin{remark} \label{}\hypertarget{}{} The [[cofibrantly generated model category|generating cofibrations]] $I$ are the boundary inclusion of [[trees]] \begin{displaymath} I = \{\partial \Omega[T] \hookrightarrow \Omega[T]\} \,. \end{displaymath} A set of generating acyclic cofibrations is guaranteed to exist, but no good explicit characterization is known to date. \end{remark} This is (\hyperlink{CisinskiMoerdijk09}{CisMoe, cor. 6.17}). \begin{prop} \label{}\hypertarget{}{} A morphism $j : X \to Y$ between cofibrant objects in $dSet$ is a weak equivalence precisely if for all fibrant objects $A$ the morphism \begin{displaymath} \tau : dSet(Y,A) \to \tau dSet(X,A) \end{displaymath} is an [[equivalence of categories]], where $\tau : SSet \to Cat$ is the [[left adjoint]] to the [[nerve]]. \end{prop} This is in (\hyperlink{Moerdijk}{Moerdijk, section 8.4}). \hypertarget{ProofOfTheModelStructure}{}\paragraph*{{Proof}}\label{ProofOfTheModelStructure} We state a list of lemmas to establish theorem \ref{TheModelStructureExistenceAndBasicProperties}. The \textbf{strategy} is the following: we [[over topos|slice]] $dSet$ over a normal [[resolution]] $E_\infty$ (a model of the [[E-∞ operad]]) of the terminal object. Since over a normal object all morphisms are normal, we have a chance to establish a \emph{[[Cisinski model structure]]} on $dSet_{/E_\infty}$. This indeed exists, prop. \ref{ModelStructureOnSlices} below, and the model structure on $dSet$ itself can then be [[transferred model structure|transferred]] along the [[inverse image]] of the [[etale geometric morphism]] $dSet_{/E_\infty} \to dSet$, prop. \ref{TransferOfTheModelStructure}. \begin{prop} \label{}\hypertarget{}{} For $A \to B$ an inner [[anodyne extension]] and $X \to Y$ a normal monomorphism of [[dendroidal sets]], the [[pushout-product axiom|pushout-product morphism]] \begin{displaymath} A \otimes Y \cup B \otimes X \to B\otimes Y \end{displaymath} (with ``$\otimes$'' the [[Boardman-Vogt tensor product]]) is an inner anodyne extension. \end{prop} This is (\hyperlink{CisinskiMoerdijk09}{Cis-Moer, prop. 3.1}). \begin{defn} \label{JFibrations}\hypertarget{JFibrations}{} Write $J := \{0 \stackrel{\simeq}{\to} 1\}$ for the [[codiscrete groupoid]] on two objects. We use the same symbol for its image along $N_d i_! : Cat \hookrightarrow dSet$. The \textbf{$J$-anodyne extensions} in $dSet$ are the morphisms generated under [[pushouts]], [[transfinite composition]] and [[retracts]] from the the inner [[anodyne extensions]] and from the [[pushout-product axiom|pushout products]] of $\{e\} \to J$ with the tree boundary inclusion \begin{displaymath} \{ \partial \Omega[T] \otimes J \; \cup \; \Omega[T] \otimes \{0\} \to \Omega[T] \otimes J \}_{e \in \{0,1\}, T \in \Omega} \,. \end{displaymath} Call a morphism a \textbf{$J$-fibration} if it has the [[right lifting property]] against $J$-anodyne extensions. \end{defn} This is (\hyperlink{CisinskiMoerdijk09}{Cis-Moer, 3.2}). \begin{prop} \label{}\hypertarget{}{} For $A \to B$ a $J$-anodyne extension and $X \to Y$ a normal monomorphism of [[dendroidal sets]], the [[pushout-product axiom|pushout-product morphism]] \begin{displaymath} A \otimes Y \cup B \otimes X \to B\otimes Y \end{displaymath} is a $J$-anodyne extension. \end{prop} This is (\hyperlink{CisinskiMoerdijk09}{Cis-Moer, prop. 3.3}). \begin{defn} \label{}\hypertarget{}{} For $X \in dSet$, the BV-tensor product with \begin{displaymath} \{0\} \coprod \{1\} \to J \to \eta \end{displaymath} defines an [[interval object]] \begin{displaymath} X \coprod X \to J \otimes X \to X \,. \end{displaymath} This is compatible with slicing, in that for any $B \in sSet$ and $a : X \to B$ a given morphism, we have an interval object in the [[over category]] $dSet_{/B}$ given by a diagram \begin{displaymath} \itexarray{ X \coprod X &\to& J \otimes X &\to& X \\ & {}_{(a,a)}\searrow & \downarrow & \swarrow_{a} \\ && B } \,. \end{displaymath} If in the above $B$ is normal and $a : X \to B$ is $J$-anodyne, then the [[left homotopies]] given by the above cylinder defines a notion of [[left homotopy]] in $dSet_{/B}$. Say a morphism $f : A \to A'$ in $dSet_{/B}$ is a \textbf{$B$-equivalence} if it is a homotopy equivalence with respect to this notion of homotopy, hence if for all $J$-fibrations $X \to B$ the induced morphism \begin{displaymath} [A',X]_{\sim_B} \to [A,X]_{\sim B} \end{displaymath} is a bijection. \end{defn} \begin{prop} \label{ModelStructureOnSlices}\hypertarget{ModelStructureOnSlices}{} Let $B \in dSet$ be normal. Then $dSet_{/B}$ carries a [[left proper model category|left proper]] [[cofibrantly generated model category]] for which \begin{itemize}% \item the weak equivalences are the $B$-equivalences; \item the cofibrations are the monomorphisms; \item the fibrant objects are the $J$-fibrations into $B$; \item a morphism between fibrant objects is a fibration precisely if its image in $dSet$ is a $J$-fibration. \end{itemize} \end{prop} This is (\hyperlink{CisinskiMoerdijk09}{Cis-Moer, prop. 3.5}). \begin{proof} Notice that \begin{enumerate}% \item every monomorphism over a normal object $B$ is normal, \item the [[over topos]] (see there) $PSh(\Omega)_{/B}$ may be identified with presheaves on the slice site \begin{displaymath} PSh(\Omega)_{/B} \simeq PSh(\Omega_{/B}) \,. \end{displaymath} \end{enumerate} Therefore for normal $B$ the slice $dSet_{/B}$, as opposed to $dSet$ itself, has a chance to carry a [[Cisinski model structure]]. And this is indeed the case: one checks that \begin{itemize}% \item $J \otimes (-)$ is a \emph{functorial cyclinder} in the sense of \emph{\href{http://ncatlab.org/nlab/show/Cisinski+model+structure#FunctorialCylinder}{this definition}}; \item the class of $J$-anodyne extensions is a class of corresponding anodyne extensions in the sense of \emph{\href{http://ncatlab.org/nlab/show/Cisinski+model+structure#AnodyneExtensions}{this definition}} \item so that together these form a \emph{homotopical structure} on $dSet_{/B}$ in the sense of \emph{\href{http://ncatlab.org/nlab/show/Cisinski+model+structure#HomotopicalStructure}{this definition}}. \end{itemize} The statement then is a special case of \emph{\href{http://ncatlab.org/nlab/show/Cisinski+model+structure#ModelStructureFromHomotopicalStructure}{this theorem}} at \emph{[[Cisinski model structure]]}. \end{proof} Let $E_\infty \in dSet$ be any normal dendroidal set such that the terminal morphism $E_\infty \to *$ is an acyclic fibration in that it has the [[right lifting property]] against the tree boundary inclusions. By the general discussion at [[over topos]] we have an [[adjunction]] \begin{displaymath} (p_! \dashv p^*) \,. dSet \stackrel{\overset{p_!}{\leftarrow}}{\underset{p^*}{\to}} dSet_{/E_\infty} \,, \end{displaymath} where $p_!$ simply forgets the map to $E_\infty$ and where $p^*$ forms the [[product]] with $E_\infty$ \begin{prop} \label{TransferOfTheModelStructure}\hypertarget{TransferOfTheModelStructure}{} The \emph{[[transferred model structure]]} on $dSet$ along the [[right adjoint]] $p^*$ of the model structure from prop. \ref{ModelStructureOnSlices} exists. This is the model structure characterized in theorem \ref{TheModelStructureExistenceAndBasicProperties}. \end{prop} This appears as (\hyperlink{CisinskiMoerdijk09}{Cis-Moer, prop. 3.12}). So far this establishes the existence of the model structure and that every dendroidal inner Kan complex is fibrant. Below in \emph{\hyperlink{CharacterizationOfTheFibrantObjects}{characterization of the fibrant objects}} we consider the converse statement: that the fibrant objects are precisely the inner Kan complexes. \hypertarget{CharacterizationOfTheFibrantObjects}{}\paragraph*{{Characterization of the fibrations}}\label{CharacterizationOfTheFibrantObjects} \begin{prop} \label{}\hypertarget{}{} A dendroidal set is $J$-fibrant, def. \ref{JFibrations}, hence fibrant in $dSet_{CM}$, precisely if it is an inner Kan complex. A morphism $f : X \to Y$ in $dSet$ between inner Kan complexes is a $J$-fibration, hence a fibration in $dSet_{CM}$, precisely if \begin{enumerate}% \item it is an [[inner Kan fibration]]; \item on [[homotopy categories]] $\tau i^* f$ is an [[isofibration]]. \end{enumerate} \end{prop} This is (\hyperlink{CisinskiMoerdijk09}{Cisinski Moerdijk, theorem 5.10}). \hypertarget{MonoidalModelCategoryStructure}{}\subsubsection*{{Monoidal model category structure}}\label{MonoidalModelCategoryStructure} \begin{prop} \label{}\hypertarget{}{} With respect to the [[Boardman-Vogt tensor product]] on [[dendroidal sets]], the model structure $dSet_{CM}$ is a [[symmetric monoidal category|symmetric]] [[monoidal model category]]. \end{prop} This is (\hyperlink{CisinskiMoerdijk09}{Cis-Moer, prop. 3.17}). \begin{cor} \label{EnrichmentOverItself}\hypertarget{EnrichmentOverItself}{} With respect to the [[internal hom]] corresponding to the [[Boardman-Vogt tensor product]], $dSet_{CM}$ is a $dSet_{CM}$-[[enriched model category]]. \end{cor} \hypertarget{Enrichment}{}\subsubsection*{{Other enrichments of the underlying category}}\label{Enrichment} \begin{prop} \label{}\hypertarget{}{} \textbf{(compatibility with the Joyal model structure)} Let $|$ be the tree with a single leaf and no vertex. Then the [[overcategory]] $dSet/\Omega[|]$ is canonically isomorphic to [[sSet]]. The model structure on [[sSet]] induced this way as the [[model structure on an overcategory]] from the model structure on $dSet$ coincides with the [[model structure for quasi-categories]]. \end{prop} This is for instance (\hyperlink{Moerdijk}{Moerdijk, proposition 8.4.3}). \begin{prop} \label{}\hypertarget{}{} This model category is naturally an $sSet_{Joyal}$-[[enriched model category]], where $sSet_{Joyal}$ is the [[model structure for quasi-categories]]. \end{prop} \begin{proof} This follows from the fact, cor. \ref{EnrichmentOverItself}, that $dSet_{CM}$ is a [[monoidal model category]] and the fact that the functor $i^*: dSet \to sSet_{Joyal}$ is a [[right Quillen functor]]. \end{proof} \begin{remark} \label{}\hypertarget{}{} However, $dSet_{CM}$ is \emph{not} an [[enriched model category]] over $sSet_{Quillen}$, the \emph{standard} [[model structure on simplicial sets]] (but see \emph{[[model structure for dendroidal Cartesian fibrations]]}). But it comes close, as the following propositions show. \end{remark} \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} \mathcal{Hom} : dSet^{op} \times dSet \to dSet \end{displaymath} for the [[internal hom]] corresponding to the [[Boardman-Vogt tensor product]]. For $A$ normal and $X$ an inner Kan dendroidal set, write \begin{displaymath} \mathcal{hom}(A,X) := i^* \mathcal{Hom}(A,X) \end{displaymath} for the underlying [[quasi-category]], and write \begin{displaymath} k(A,X) := Core(\mathcal{hom}(A,X)) \in KanCplx \end{displaymath} for the maximal [[Kan complex]] inside the [[quasi-category]] inside the [[internal hom]]. Write \begin{displaymath} -^{(-)} : sSet^{op} \times dSet \to dSet \end{displaymath} for the corresponding [[powering]], characterized by the existence of a [[natural isomorphism]] \begin{displaymath} Hom_{sSet}(K, k(A,X)) \simeq Hom_{dSet}(A, X^{(K)}) \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} For $p : X \to Y$ a fibration between fibrant dendroidal sets (hence an [[inner Kan fibration]] and an [[isofibration]] on the underlying [[homotopy category]]), and for $A \to B$ a normal monomorphism, the induced morphism \begin{displaymath} k(B,X) \to k(B,Y) \times_{k(A,Y)} k(A,X) \end{displaymath} is a [[Kan fibration]] between [[Kan complexes]]. \end{prop} This is (\hyperlink{CisinskiMoerdijk09}{Cis-Moer, prop. 6.7}). \begin{prop} \label{}\hypertarget{}{} If $A \to B$ is the above is an [[anodyne extension]] (acyclic monomorphism) of simplicial sets, then \begin{displaymath} X^{(B)} \to Y^{(B)} \times_{Y^{(A)}} X^{(A)} \end{displaymath} is an acyclic fibration in $dSet_{CM}$. \end{prop} This is (\hyperlink{CisinskiMoerdijk09}{Cis-Moer, cor. 6.9}). \begin{prop} \label{}\hypertarget{}{} For $A$ normal and $X$ fibrant, the Kan complex \begin{displaymath} k(A,X) \simeq \mathbb{R}Hom(A,X) \end{displaymath} is the correct [[derived hom-space]] of $dSet_{CM}$. \end{prop} \begin{proof} One checks that $n \mapsto X^{(\Delta[n])}$ is a fibrant resolution of $X$ in the [[Reedy model structure]] $[\Delta^{op}, dSet_{CM}]_{Reedy}$. By the discussion at \emph{[[simplicial model category]]} and \emph{[[derived hom-space]]} the latter is therefore given by the simplicial set \begin{displaymath} n \mapsto Hom_{dSet}(A, X^{(\Delta[n])}) \,. \end{displaymath} By the [[tensoring]]-definition of $X^{(\Delta[n])}$ this is isomorphic to \begin{displaymath} \cdots = Hom_{sSet}(\Delta[n], k(A,X)) = k(A,X)_n \,. \end{displaymath} \end{proof} \hypertarget{relation_to_other_model_structures}{}\subsubsection*{{Relation to other model structures}}\label{relation_to_other_model_structures} We discuss the relation of the model structure on dendroidal sets to other model category structures for operads. See the \emph{[[table - models for (infinity,1)-operads]]} for an overview. \hypertarget{model_structure_for_quasicategories}{}\paragraph*{{Model structure for quasi-categories}}\label{model_structure_for_quasicategories} \begin{proposition} \label{}\hypertarget{}{} The [[adjunction]] \begin{displaymath} (j_! \dashv j^*) : dSet \stackrel{\overset{j_!}{\leftarrow}}{\underset{j^*}{\to}} sSet \end{displaymath} induced from the inclusion $j : \Delta \hookrightarrow \Omega$ constitutes a [[Quillen adjunction]] between the above model structure on dendroidal sets, and the [[model structure for quasi-categories]]. \end{proposition} \begin{proof} By the proof of (\hyperlink{CisinskiMoerdijk09}{Cisinski-Moerdijk, cor. 2.10}) the model structure for quasi-categories is in fact the restriction, along $j_!$, of the model structure on dendroidal sets. Therefore $j_!$ is left Quillen. \end{proof} \hypertarget{RelationToModelStructureForDendroidalCompleteSegal}{}\paragraph*{{Model structure for dendroidal complete Segal spaces}}\label{RelationToModelStructureForDendroidalCompleteSegal} There is a [[Quillen equivalence]] to the [[model structure for dendroidal complete Segal spaces]] (see there). A crucial step in the proof is the following expression of the acyclic cofibrations on $dSet_{CM}$ in terms of the dendroidal interval $J_d$ as follows. \begin{prop} \label{}\hypertarget{}{} The class of acyclic cofibrations between normal dendroidal sets is the smallest class of morphisms between normal dendroidal sets \begin{itemize}% \item which contains the $J$-anodyne extensions; \item with left cancellation property: if a composite $\stackrel{i}{\to} \stackrel{j}{\to}$ is in the class and $i$ is, then so is $j$. \end{itemize} \end{prop} (\hyperlink{CisinskiMoerdijk09}{Cis-Moer 09, prop. 3.16}) \hypertarget{RelationToModelStrictureOnSimplicialOperads}{}\paragraph*{{Model structure on simplicial operads}}\label{RelationToModelStrictureOnSimplicialOperads} There exists also a [[model structure on simplicial operads]], which is [[Quillen equivalence|Quillen equivalent]] to the model structure on dendroidal sets. This Quillen equivalence is an operadic generalization of the Quillen equivalence between the [[model structure on sSet-categories]] and the [[model structure for quasi-categories]]. \begin{theorem} \label{}\hypertarget{}{} There exists an [[adjunction]] \begin{displaymath} (W_! \dashv hcN_d) : sSet Operad \stackrel{\overset{W_!}{\leftarrow}}{\underset{hcN_d}{\to}} dSet \,, \end{displaymath} Whise [[right adjoint]] is the [[dendroidal homotopy coherent nerve]]. This is a [[Quillen equivalence]] between the model structure on dendroidal sets, and the [[model structure on simplicial operads]]. \end{theorem} This is (\hyperlink{CisinskiMoerdijk11}{Cisinski-Moerdijk 11, theorem 815}). \begin{remark} \label{}\hypertarget{}{} Under the inclusions (see the discussion at \emph{[[dendroidal set]]}) \begin{displaymath} \itexarray{ sSet Cat &\hookrightarrow & sSet Operad \\ && {}^{\mathllap{hcN_d}}\downarrow \uparrow^{\mathrlap{W_!}} \\ sSet \simeq dSet/\eta &\hookrightarrow & dSet } \end{displaymath} this restricts to the Quillen equivalence between the [[model structure on sSet-categories]] and the [[model structure for quasi-categories]] discussed at \emph{[[relation between quasi-categories and simplicial categories]]}. \end{remark} \hypertarget{model_structure_on_operads}{}\paragraph*{{Model structure on $Set$-Operads}}\label{model_structure_on_operads} \begin{remark} \label{}\hypertarget{}{} Write [[Operad]] for the category of [[symmetric operads]] over [[Set]]. The [[dendroidal set|dendroidal nerve adjunction]] \begin{displaymath} (\tau_d \dashv N_d) : Operad \stackrel{\overset{\tau_d}{\leftarrow}}{\underset{N_d}{\to}} dSet \end{displaymath} is a [[Quillen adjunction]] between the model structure on dendroidal sets, def. \ref{ModelStructureOnDendroidalSets}, and the [[canonical model structure on Operad]]. Moreover, $N_d$ detects and preserves weak equivalences, while $\tau_d$ preserves weak equivalences. \end{remark} This is (\hyperlink{CisinskiMoerdijk09}{Cisinski-Moerdijk 09, prop. 2.5}). \hypertarget{model_structure_for_symmetric_monoidal_categories}{}\paragraph*{{Model structure for symmetric monoidal $(\infty,1)$-categories}}\label{model_structure_for_symmetric_monoidal_categories} \begin{prop} \label{}\hypertarget{}{} There is a [[Quillen adjunction]] \begin{displaymath} dSet_{CM} \stackrel{\overset{id}{\leftarrow}}{\underset{id}{\to}} dSet_{He} \end{displaymath} which exhibits the [[model structure for dendroidal left fibrations]] as a [[Bousfield localization of model categories|left Bousfield localization]] of the Cisinski-Moerdijk model structure on dendroidal sets. \end{prop} See (\hyperlink{Heuts}{Heuts, remark 6.8.0.2}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[canonical model structure on Operad]], \item [[model structure on operads]] \item [[model structure for dendroidal complete Segal spaces]] \item [[table - models for (infinity,1)-operads]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A useful discussion of of the model structure on dendroidal sets is section 8 of \begin{itemize}% \item [[Ieke Moerdijk]], \emph{Lectures on dendroidal sets} , lectures given at the Barcelona workshop on \emph{\href{http://www.crm.es/HigherCategories/}{Simplicial methods in higher categories}} (2008) (\href{http://www.crm.es/Publications/quaderns/Quadern45-1.pdf}{preliminary writeup}) \end{itemize} An expanded and polished version has meanwhile been written up by Javier Guiti\'e{}rrez and should appear in print soon. An electronic copy is probably available on request. The model structure was originally given in \begin{itemize}% \item [[Denis-Charles Cisinski]], [[Ieke Moerdijk]], \emph{Dendroidal sets as models for homotopy operads} (\href{http://arxiv.org/abs/0902.1954}{arXiv:0902.1954}) \end{itemize} making heavy use of results on [[Cisinski model structures]] from \begin{itemize}% \item [[Denis-Charles Cisinski]], \emph{[[joyalscatlab:Les préfaisceaux comme type d'homotopie]]}, Ast\'e{}risque, Volume 308, Soc. Math. France (2006), 392 pages (\href{http://www.math.univ-toulouse.fr/~dcisinsk/ast.pdf}{pdf}) \end{itemize} A detailed discussion of the fibrant objects in the model structure is in \begin{itemize}% \item [[Ieke Moerdijk]] [[Ittay Weiss]], \emph{On inner Kan complexes in the category of dendroidal sets} (\href{http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6W9F-4VM2KC8-1&_user=457046&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1115574112&_rerunOrigin=google&_acct=C000021878&_version=1&_urlVersion=0&_userid=457046&md5=5eb2307e02ed1aa9e6fe2c7809346546}{web}) \end{itemize} The proof of the Quillen equivalence between the model structure on dendroidal sets and that on $sSet$-operads is given in \begin{itemize}% \item [[Denis-Charles Cisinski]], [[Ieke Moerdijk]], \emph{Dendroidal sets and simplicial operads} (\href{http://arxiv.org/abs/1109.1004}{arXiv:1109.1004}) \end{itemize} The relation to the [[model structure for dendroidal Cartesian fibrations]] and the [[model structure for dendroidal left fibrations]] is discussed in \begin{itemize}% \item [[Gijs Heuts]], \emph{Algebras over infinity-Operads} (\href{http://arxiv.org/abs/1110.1776}{arXiv:1110.1776}) \end{itemize} \end{document}