\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure on dg-Lie algebras} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{RectificationResolution}{Relation to $L_\infty$-algebras}\dotfill \pageref*{RectificationResolution} \linebreak \noindent\hyperlink{RelationToDgCoalgebras}{Relation to dg-coalgebras}\dotfill \pageref*{RelationToDgCoalgebras} \linebreak \noindent\hyperlink{relation_to_simplicial_lie_algebras}{Relation to simplicial Lie algebras}\dotfill \pageref*{relation_to_simplicial_lie_algebras} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} [[dg-Lie algebras]] may be thought of as the ``strict'' [[strong homotopy Lie algebras]]. As such they support a [[homotopy theory]]. The \emph{[[model category]]} structure on dg-Lie algebras is one way to present this homotopy theory. This is used for instance in [[deformation theory]], see at \emph{[[formal moduli problems]]}. For dg-Lie algebras in positive degree and over the rational numbers this model structure, due to (\hyperlink{Quillen69}{Quillen 69, theorem II}) is one of the algebraic models for presenting [[rational homotopy theory]] (see there) of [[simply connected topological spaces]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{prop} \label{ProjectiveModelStructureOndgLieAlgebras}\hypertarget{ProjectiveModelStructureOndgLieAlgebras}{} There exists a [[model category]] structure $(dgLie_k)_{proj}$ on the category $dgLie_k$ of [[dg-Lie algebras]] over a commutative [[ring]] $k \supset \mathbb{Q}$ such that \begin{itemize}% \item [[fibrations]] the [[surjective maps]] \item [[weak equivalences]] the [[quasi-isomorphisms]] on the underlying [[chain complexes]]. \end{itemize} \end{prop} For dg-Lie algebras in degrees $\geq n \geq 1$, this is due to \hyperlink{Quillen69}{Quillen 69}. For unbounded dg-Lie algebras this is due to (\hyperlink{Hinich97}{Hinich 97}). This becomes a [[simplicial category]] with simplicial [[mapping spaces]] given by \begin{displaymath} dgLie(\mathfrak{g}, \mathfrak{h}) \coloneqq ([k] \mapsto Hom_{dgLie}(\mathfrak{g} , \Omega^\bullet(\Delta^k) \otimes\mathfrak{h})) \,, \end{displaymath} where \begin{itemize}% \item $\Omega^\bullet(\Delta^k)$ is the [[dg-algebra]] of [[polynomial differential forms]] on the $k$-[[simplex]]; \item $\Omega^\bullet(\Delta^k)\otimes \mathfrak{h}$ is the canonical dg-Lie algebra structure on the [[tensor product]]. \end{itemize} (\hyperlink{Hinich97}{Hinich 97, 4.8.2}, following Bousfield-Gugenheim 76tructure on dg-algebras\#HomComplexes)) This enrichment satisfies together with the model structure some of the properties of a [[simplicial model category]] (\hyperlink{Hinich97}{Hinich 97, 4.8.3, 4.8.4}), but not all of them. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{RectificationResolution}{}\subsubsection*{{Relation to $L_\infty$-algebras}}\label{RectificationResolution} dg-Lie algebras with this model structure are a \emph{rectification} of [[L-∞ algebras]]: for $Lie$ the [[Lie operad]] and $\widehat Lie$ its standard [[cofibrant resolution]], [[algebras over an operad]] over $Lie$ in chain complexes are [[dg-Lie algebras]] and algebras over $\widehat Lie$ are [[L-∞ algebras]] and by the rectification result discussed at \emph{[[model structure on dg-algebras over an operad]]} there is an induced [[Quillen equivalence]] \begin{displaymath} Alg(\widehat Lie) \stackrel{\simeq}{\to} Alg(Lie) \end{displaymath} between the [[model structure for L-∞ algebras]] which is [[transferred model structure|transferred]] from the [[model structure on chain complexes]] (unbounded propjective) to the above model structure on chain complexes. There is also a [[Quillen equivalence]] from the model structure on dg-Lie algebras to the [[model structure on dg-coalgebras]]. This is part of a web of Quillen equivalences that identifies dg-Lie algebra/$L_\infty$-algebras with [[infinitesimal object|infinitesimal]] [[derived stack|derived]] [[∞-stacks]] (``[[formal moduli problems]]''). More on this is at \emph{[[model structure for L-∞ algebras]]}. Specifically, there is (\hyperlink{Quillen}{Quillen 69}) an [[adjunction]] \begin{displaymath} (\mathcal{R} \dashv i) \;\colon\; dgLie \stackrel{\overset{\mathcal{R}}{\leftarrow}}{\underset{i}{\to}} dgCoCAlg \end{displaymath} between [[dg-coalgebras]] and dg-Lie algebras, where the [[right adjoint]] is the (non-full) inclusion that regards a dg-Lie algebra as a [[differential graded coalgebra]] with co-binary differential, and where the [[left adjoint]] $\mathcal{R}$ (``rectification'') sends a dg-coalgebra to a dg-Lie algebra whose underlying graded [[Lie algebra]] is the [[free Lie algebra]] on the underlying [[chain complex]]. Over a [[field]] of [[characteristic]] 0, this adjunction is a [[Quillen equivalence]] between the [[model structure for L-∞ algebras]] on $dgCoCAlg$ and the model structure on $dgLie$ (\hyperlink{Hinich98}{Hinich 98, theorem 3.2}). In particular, therefore the composite $i \circ \mathcal{R}$ is a [[resolution]] functor for $L_\infty$-algebras. \hypertarget{RelationToDgCoalgebras}{}\subsubsection*{{Relation to dg-coalgebras}}\label{RelationToDgCoalgebras} Via the above relation to $L_\infty$-algebras, dg-Lie algebras are also connected by a composite adjunction to [[dg-coalgebras]]. We dicuss the direct adjunction. Throughout, let $k$ be of [[characteristic zero]]. \begin{defn} \label{CEfunctor}\hypertarget{CEfunctor}{} \textbf{(Chevalley-Eilenberg dg-coalgebra)} Write \begin{displaymath} CE \;\colon\; dgLieAlg_{k} \longrightarrow dgCocAlg_k \end{displaymath} for the [[Chevalley-Eilenberg algebra]] functor. It sends a dg-Lie algebra $(\mathfrak{g}, \partial, [-,-])$ to the [[dg-coalgebra]] \begin{displaymath} CE(\mathfrak{g},\partial,[-,-]) \;\coloneqq\; \left( \vee^\bullet \mathfrak{g}[1] ,\; D = \partial + [-,-] \right) \,, \end{displaymath} where on the right the extension of $\partial$ and $[-,-]$ to graded [[derivations]] is understood. \end{defn} For dg-Lie algebras concentrated in degrees $\geq n \geq 1$ this is due to (\hyperlink{Quillen}{Quillen 69, appendix B, prop 6.2}). For unbounded dg-algebras, this is due to (\hyperlink{Hinich98}{Hinich 98, 2.2.2}). \begin{defn} \label{LeftAdjointToCEfunctor}\hypertarget{LeftAdjointToCEfunctor}{} For $(X,D) \in dgCocalg_k$ write \begin{displaymath} \mathcal{L}(X,D) \coloneqq \left( F(\overline{X}[-1]),\; \partial \coloneqq D + (\Delta - 1 \otimes id - id \otimes 1) \right) \;\in dgLieAlg_k\; \end{displaymath} where \begin{enumerate}% \item $\overline{X} \coloneqq ker(\epsilon)$ is the [[kernel]] of the [[counit]], regarded as a [[chain complex]]; \item $F$ is the [[free Lie algebra]] functor (as graded Lie algebras); \item on the right we are extending $(\Delta - 1 \otimes id - id \otimes 1) \colon \overline{X} \to \overline{X} \otimes \overline{X}$ as a Lie algebra [[derivation]] \end{enumerate} \end{defn} For dg-Lie algebras concentrated in degrees $\geq n \geq 1$ this is due to (\hyperlink{Quillen}{Quillen 69, appendix B, prop 6.1}). For unbounded dg-algebras, this is due to (\hyperlink{Hinich98}{Hinich 98, 2.2.1}). \begin{prop} \label{CEAdjunction}\hypertarget{CEAdjunction}{} The [[functors]] from def. \ref{CEfunctor} and def. \ref{LeftAdjointToCEfunctor} are [[adjoint functor|adjoint]] to each other: \begin{displaymath} dgLieAlg_k \underoverset {\underset{CE}{\longrightarrow}} {\overset{\mathcal{L}}{\longleftarrow}} {\bot} dgCocAlg_k \,. \end{displaymath} Moreover, for $X \in dgCocAlg_k$ and $\mathfrak{g} \in dgLieAlg_k$ then the adjoint [[hom sets]] are [[natural isomorphism|naturally isomorphic]] \begin{displaymath} Hom(\mathcal{L}(X), \mathfrak{g}) \simeq Hom(X, CE(\mathfrak{g})) \simeq MC(Hom(\overline{X},\mathfrak{g})) \end{displaymath} to the [[Maurer-Cartan elements]] in the Hom-dgLie algebra from $\overline{X}$ to $\mathfrak{g}$. \end{prop} For dg-Lie algebras concentrated in degrees $\geq n \geq 1$ this is due to (\hyperlink{Quillen}{Quillen 69, appendix B, somewhere}). For unbounded dg-algebras, this is due to (\hyperlink{Hinich98}{Hinich 98, 2.2.5}). \begin{prop} \label{QuillenAdjunctionCE}\hypertarget{QuillenAdjunctionCE}{} The adjunction $(\mathcal{L} \dashv CE)$ from prop. \ref{CEAdjunction} is a [[Quillen adjunction]] between then projective [[model structure on dg-Lie algebras]] as the [[model structure on dg-coalgebras]] \begin{displaymath} (dgLieAlg_k)_{proj} \underoverset {\underset{CE}{\longrightarrow}} {\overset{\mathcal{L}}{\longleftarrow}} {\bot} (dgCocAlg_k)_{Quillen} \,. \end{displaymath} \end{prop} (\hyperlink{Hinich98}{Hinich 98, lemma 5.2.2, lemma 5.2.3}) Moreover: \begin{prop} \label{}\hypertarget{}{} In non-negatively graded dg-coalgebras, both [[Quillen functors]] $(\mathcal{L} \dashv CE)$ from prop. \ref{QuillenAdjunctionCE} preserve all [[quasi-isomorphisms]], and both the [[adjunction unit]] and the [[adjunction counit]] are quasi-isomorphisms. \end{prop} For dg-algebras in degrees $\geq n \geq 1$ this is (\hyperlink{Quillen76}{Quillen 76, theorem 7.5}). In unbounded degrees this is (\hyperlink{Hinich98}{Hinich 98, prop. 3.3.2}) \begin{theorem} \label{}\hypertarget{}{} The Quillen adjunctin from prop. \ref{QuillenAdjunctionCE} is a [[Quillen equivalence]]: \begin{displaymath} (dgLieAlg_k)_{proj} \underoverset {\underset{CE}{\longrightarrow}} {\overset{\mathcal{L}}{\longleftarrow}} {{}_{\phantom{qu}}\simeq_{Qu}} (dgCocAlg_k)_{Quillen} \,. \end{displaymath} \end{theorem} (\hyperlink{Hinich98}{Hinich 98, theorem 3.2}) using (\hyperlink{Quillen76}{Quillen 76 II 1.4}) \hypertarget{relation_to_simplicial_lie_algebras}{}\subsubsection*{{Relation to simplicial Lie algebras}}\label{relation_to_simplicial_lie_algebras} The [[normalized chains complex]] functor from [[simplicial Lie algebras]] constitutes a [[Quillen adjunction]] from the projective [[model structure on simplicial Lie algebras]], see \href{model+structure+on+simplicial+Lie+algebras#QuillenAdjunctionTodgLieAlgebras}{there}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[model structure on dg-coalgebras]] \item [[model structure on simplicial Lie algebras]] \item [[model structure for L-∞ algebras]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The model structure on dg-Lie algebras in [[characteristic zero]] and in degrees $\geq n \geq 1$ goes back to \begin{itemize}% \item [[Dan Quillen]], section II.5 and appendix B of \emph{Rational homotopy theory}, Annals of Math., 90(1969), 205--295 (\href{http://www.jstor.org/stable/1970725}{JSTOR}, \href{http://www.math.northwestern.edu/~konter/gtrs/rational.pdf}{pdf}) \end{itemize} This is extended to a model structure on dg-Lie algebras in unbounded degrees in \begin{itemize}% \item [[Vladimir Hinich]], \emph{Homological algebra of homotopy algebras}, Comm. in algebra, 25(10)(1997), 3291--3323 (\href{http://arxiv.org/abs/q-alg/9702015}{arXiv:q-alg/9702015}, \emph{Erratum} (\href{http://arxiv.org/abs/math/0309453}{arXiv:math/0309453})) \end{itemize} and the corresponding [[Quillen adjunction]] to the [[model structure on dg-coalgebras]] in unbounded degrees is discussed in \begin{itemize}% \item [[Vladimir Hinich]], \emph{DG coalgebras as formal stacks}, Journal of Pure and Applied Algebra Volume 162, Issues 2--3, 24 August 2001, Pages 209--250 (\href{http://arxiv.org/abs/math/9812034}{arXiv:math/9812034}) \end{itemize} See also section 2.1 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Formal moduli problems]]} \end{itemize} Review with discussion of [[homotopy limits]] and [[homotopy colimits]] is in \begin{itemize}% \item [[Ben Walter]], section 4 of \emph{Rational Homotopy Calculus of Functors} (\href{http://arxiv.org/abs/math/0603336}{arXiv:math/0603336}) \end{itemize} [[!redirects model structures on dg-Lie algebras]] \end{document}