\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure on dg-algebras} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{projective_model_structure_on_nonnegatively_graded_cochain_dgcalgebras}{Projective model structure on Non-negatively graded cochain dgc-algebras}\dotfill \pageref*{projective_model_structure_on_nonnegatively_graded_cochain_dgcalgebras} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{SullivanAlgebras}{Cofibrations and Sullivan algebras}\dotfill \pageref*{SullivanAlgebras} \linebreak \noindent\hyperlink{HomComplexes}{Simplicial hom-complexes}\dotfill \pageref*{HomComplexes} \linebreak \noindent\hyperlink{relation_to_cosimplicial_commutative_algbras}{Relation to cosimplicial commutative algbras}\dotfill \pageref*{relation_to_cosimplicial_commutative_algbras} \linebreak \noindent\hyperlink{CommVsNoncomm}{Commutative vs. non-commutative dg-algebras}\dotfill \pageref*{CommVsNoncomm} \linebreak \noindent\hyperlink{Unbounded}{Unbounded dg-algebras}\dotfill \pageref*{Unbounded} \linebreak \noindent\hyperlink{GradingsAndConventions}{Gradings and conventions}\dotfill \pageref*{GradingsAndConventions} \linebreak \noindent\hyperlink{definition_8}{Definition}\dotfill \pageref*{definition_8} \linebreak \noindent\hyperlink{properties_2}{Properties}\dotfill \pageref*{properties_2} \linebreak \noindent\hyperlink{properness}{Properness}\dotfill \pageref*{properness} \linebreak \noindent\hyperlink{derived_tensor_product}{Derived tensor product}\dotfill \pageref*{derived_tensor_product} \linebreak \noindent\hyperlink{SimplicialHomObjects}{Derived hom-functor}\dotfill \pageref*{SimplicialHomObjects} \linebreak \noindent\hyperlink{DerivedCopowering}{Derived copowering over $sSet$}\dotfill \pageref*{DerivedCopowering} \linebreak \noindent\hyperlink{DerivedPowering}{Derived powering over $sSet$}\dotfill \pageref*{DerivedPowering} \linebreak \noindent\hyperlink{PathObjectsForUnboundedCommutative}{Path objects}\dotfill \pageref*{PathObjectsForUnboundedCommutative} \linebreak \noindent\hyperlink{RelationToAInfinityAlgebras}{Relation to $H \mathbb{Z}$-algebra spectra}\dotfill \pageref*{RelationToAInfinityAlgebras} \linebreak \noindent\hyperlink{RelationToEInfinityAlgebras}{Relation to $\mathbb{E}_\infty$-algebras}\dotfill \pageref*{RelationToEInfinityAlgebras} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[model category]] structure on a category of [[differential graded algebras]] or more specifically on a [[category of differential graded-commutative algebras]] tends to present an [[(∞,1)-category]] of [[∞-algebra over an (∞,1)-algebraic theory|∞-algebras]]. For dg-algebras bounded in negative or positive degrees, the [[monoidal Dold-Kan correspondence]] asserts that their model category structures are [[Quillen equivalence|Quillen equivalent]] to the corresponding [[model structure on simplicial algebras|model structure on (co)simplicial algebras]]. This case plays a central role in [[rational homotopy theory]]. The case of model structures on unbounded dg-algebras may be thought of as induced from this by passage to the [[derived geometry]] modeled on formal duals of the bounded dg-algebras. This is described at [[dg-geometry]]. \hypertarget{general}{}\subsection*{{General}}\label{general} The category of [[dg-algebra]]s is that of [[monoid]]s in a [[category of chain complexes]]. Accordingly general results on a [[model structure on monoids in a monoidal model category]] apply. Below we spell out special cases, such as restricting to [[commutative monoids]] when working over a [[ground field]] of [[characteristic zero]], or restricting to non-negatively graded cochain dg-algebras. \hypertarget{projective_model_structure_on_nonnegatively_graded_cochain_dgcalgebras}{}\subsection*{{Projective model structure on Non-negatively graded cochain dgc-algebras}}\label{projective_model_structure_on_nonnegatively_graded_cochain_dgcalgebras} We discuss the projective model structure on [[differential graded-commutative algebras|differential non-negatively graded-commutative algebras]]. This was originally introduced in \hyperlink{BousfieldGugenheim76}{Bousfield-Gugenheim 76} as a [[model category]] for [[Dennis Sullivan]]`s approach to [[rational homotopy theory]]. \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} \begin{defn} \label{dgcCochainAlgebrasInNonNegativeDegrees}\hypertarget{dgcCochainAlgebrasInNonNegativeDegrees}{} For $k$ a [[field]] of [[characteristic zero]], write \begin{displaymath} dgcAlg^{\geq 0}_{k} \end{displaymath} for the [[category]] of [[differential graded-commutative algebras]] over $k$ in non-negative degrees, equivalently the category of [[commutative monoids]] in the [[symmetric monoidal category]] $Ch^{\geq 0}(k)$ of [[cochain complexes]] in non-negative degrees, equipped with the [[tensor product of chain complexes]]. \end{defn} \begin{defn} \label{dgcCochainAlgebraInNonNegDegreeOfFiniteType}\hypertarget{dgcCochainAlgebraInNonNegDegreeOfFiniteType}{} \textbf{(finite type)} Say that a [[dgc-algebra]] $A \in dgcAlg^{\geq 0}_k$ (def. \ref{dgcCochainAlgebrasInNonNegativeDegrees}) is of \emph{[[finite type]]} if its [[forgetful functor|underlying]] [[chain complex]] is in each degree of [[finite number|finite]] [[dimension]] as a $k$-[[vector space]]. \end{defn} \begin{defn} \label{ProjectiveModelStructureOnCdgAlg}\hypertarget{ProjectiveModelStructureOnCdgAlg}{} Write $(dgcAlg^{\geq 0}_k)_{proj}$ for the catgory of [[dgc-algebras]] from def. \ref{dgcCochainAlgebrasInNonNegativeDegrees} equipped with the following [[classes]] of morphisms: \begin{itemize}% \item \emph{weak equivalences} are those [[homomorphisms]] of dg-algebras whose underlying [[chain map]] is [[quasi-isomorphism]]; \item \emph{fibrations} are those [[homomorphisms]] which are degreewise [[surjections]]; \end{itemize} \end{defn} \begin{prop} \label{IndeedProjectiveModelStructureOnCdgAlg}\hypertarget{IndeedProjectiveModelStructureOnCdgAlg}{} The category $(dgcAlg^{\geq 0}_k)_{proj}$ from def. \ref{ProjectiveModelStructureOnCdgAlg} is a [[model category]], to be called the \emph{projective model structure}. \end{prop} (\hyperlink{BousfieldGugenheim76}{Bousfield-Gugenheim 76, theorem 4.3}) \begin{remark} \label{}\hypertarget{}{} \textbf{(category of fibrant objects)} Evidently every object in $(dgcAlg^{\geq 0}_k)_{proj}$ (def. \ref{ProjectiveModelStructureOnCdgAlg}, prop. \ref{IndeedProjectiveModelStructureOnCdgAlg}) is fibrant. Therefore these model categories structures are in particular also structures of a [[category of fibrant objects]]. \end{remark} The nature of the cofibrations is discussed \hyperlink{SullivanAlgebras}{below}. \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} \hypertarget{SullivanAlgebras}{}\paragraph*{{Cofibrations and Sullivan algebras}}\label{SullivanAlgebras} \begin{defn} \label{}\hypertarget{}{} \textbf{(sphere and disk algebras)} Write $k[n]$ for the graded vector space which is the ground field $k$ in degree $n$ and 0 in all other degrees. For $n \in \mathbb{N}$, consider the [[semifree dgc-algebras]] \begin{displaymath} S(n) \coloneqq (\wedge^\bullet k[n], 0) \end{displaymath} and for $n \geq 1$ the [[semifree dgc-algebras]] \begin{displaymath} D(n) \coloneqq \left\lbrace \itexarray{ 0 & (n = 0) \\ (\wedge^\bullet (k[n] \oplus k[n-1]), 0) & (n \gt 0) } \right. \end{displaymath} for which the differential sends the generator of $k[n-1]$ to that of $k[n]$ Write \begin{displaymath} i_n \colon S(n) \to D(n) \end{displaymath} for the obvious morphism that takes the generator in degree $n$ to the generator in degree $n$ (and for $n = 0$ it is the unique morphism from the [[initial object]] $(0,0)$). For $n \gt 0$ write \begin{displaymath} j_n \colon k[0] \to D(n) \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} \textbf{(generating cofibrations)} The sets \begin{displaymath} I = \{i_n \}_{n \geq 1} \cup \{k[0] \to S(0), S(0) \to k[0]\} \end{displaymath} and \begin{displaymath} J = \{j_n \}_{n \gt 1} \end{displaymath} are sets of generating cofibrations and acyclic cofibrations, respectively, exhibiting the model category $(dgcAlg^{\geq 0}_k)_{proj}$ from prop. \ref{IndeedProjectiveModelStructureOnCdgAlg} as a [[cofibrantly generated model category]]. \end{prop} review includes (\hyperlink{Hess06}{Hess 06, p. 6}) In this section we describe the cofibrations in the model structure on $(dgcalg^{\geq 0}_k)_{proj}$ (def. \ref{ProjectiveModelStructureOnCdgAlg}, prop. \ref{IndeedProjectiveModelStructureOnCdgAlg}). Notice that it is these that are in the image of the dual [[monoidal Dold-Kan correspondence]]. Before we characterize the cofibrations, first some notation. For $V$ a $\mathbb{Z}$-[[graded vector space]] write $\wedge^\bullet V$ for the [[Grassmann algebra]] over it. Equipped with the trivial differential $d = 0$ this is a [[semifree dga]] $(\wedge^\bullet V, d=0)$. With $k$ our ground field we write $(k,0)$ for the corresponding dg-algebra, the tensor unit for the standard [[monoidal category|monoidal structure]] on $dgAlg$. This is the [[Grassmann algebra]] on the 0-vector space $(k,0) = (\wedge^\bullet 0, 0)$. \begin{defn} \label{}\hypertarget{}{} \textbf{(Sullivan algebras)} A \textbf{[[relative Sullivan algebra]]} is a [[morphism]] of dg-algebras that is an inclusion \begin{displaymath} (A,d) \to (A \otimes_k \wedge^\bullet V, d') \end{displaymath} for $(A,d)$ some dg-algebra and for $V$ some graded vector space, such that \begin{itemize}% \item there is a [[well ordered set]] $J$ \item indexing a basis $\{v_\alpha \in V| \alpha \in J\}$ of $V$; \item such that with $V_{\lt \beta} = span(v_\alpha | \alpha \lt \beta)$ for all basis elements $v_\beta$ we have that \begin{displaymath} d' v_\beta \in A \otimes \wedge^\bullet V_{\lt \beta} \,. \end{displaymath} \end{itemize} This is called a \textbf{minimal} [[relative Sullivan algebra]] if in addition the condition \begin{displaymath} (\alpha \lt \beta) \Rightarrow (deg v_\alpha \leq deg v_\beta) \end{displaymath} holds. For a Sullivan algebra $(k,0) \to (\wedge^\bullet V, d)$ relative to the tensor unit we call the [[semifree dga]] $(\wedge^\bullet V,d)$ simply a \textbf{Sullivan algebra}. And a \textbf{minimal Sullivan algebra} if $(k,0) \to (\wedge^\bullet V, d)$ is a minimal relative Sullivan algebra. \end{defn} \begin{remark} \label{}\hypertarget{}{} Sullivan algebras were introduced by [[Dennis Sullivan]] in his development of [[rational homotopy theory]]. This is one of the key application areas of the model structure on dg-algebras. \end{remark} \begin{remark} \label{}\hypertarget{}{} \textbf{($L_\infty$-algebras)} Because they are [[semifree dgas]], Sullivan dg-algebras $(\wedge^\bullet V,d)$ are (at least for degreewise finite dimensional $V$) [[Chevalley-Eilenberg algebra]]s of [[L-∞-algebra]]s. The co-commutative differential co-algebra encoding the corresponding [[L-∞-algebra]] is the free cocommutative algebra $\vee^\bullet V^*$ on the degreewise dual of $V$ with differential $D = d^*$, i.e. the one given by the formula \begin{displaymath} \omega(D(v_1 \vee v_2 \vee \cdots v_n)) = - (d \omega) (v_1, v_2, \cdots, v_n) \end{displaymath} for all $\omega \in V$ and all $v_i \in V^*$. \end{remark} \begin{prop} \label{}\hypertarget{}{} \textbf{(cofibrations are relative Sullivan algebras)} The cofibration in $(dgcAlg^{\geq 0}_{k})_{proj}$ are precisely the [[retract]]s of [[relative Sullivan algebras]] $(A,d) \to (A\otimes_k \wedge^\bullet V, d')$. Accordingly, the cofibrant objects in $(dgcAlg^{\geq 0}_{k})_{proj}$ are precisely the Sullivan algebras $(\wedge^\bullet V, d)$ \end{prop} \hypertarget{HomComplexes}{}\paragraph*{{Simplicial hom-complexes}}\label{HomComplexes} We discuss [[simplicial set|simplicial]] [[mapping spaces]] between [[dgc-algebras]]. These \emph{almost} make the projective model structure $(dgcAlg^{\geq 0}_k)_{proj}$ from prop. \ref{IndeedProjectiveModelStructureOnCdgAlg} into a [[simplicial model category]], except that the [[tensoring]]/[[powering]] [[isomorphism]] holds only for [[finite set|finite]] [[simplicial sets]] or else on [[dgc-algebras]] of [[finite type]]. Still, this has useful implications, for instance it implies that the [[reduced suspension]] and [[loop space]] [[adjunction]] on augmented algebras|augmented] [[dg-algebras]] is a [[Quillen adjunction]]. \begin{defn} \label{MappingSpaceSimOndgcCochainAlgebrasInNonNegDegrees}\hypertarget{MappingSpaceSimOndgcCochainAlgebrasInNonNegDegrees}{} \textbf{(simplicial mapping spaces)} For $A,B \in dgcAlg^{\geq 0}_k$ (def. \ref{dgcCochainAlgebrasInNonNegativeDegrees}), let \begin{displaymath} Maps(A,B) \in sSet \end{displaymath} be the [[simplicial set]] whose [[n-simplices]] are the dg-algebra [[homomorphisms]] from $A$ into the [[tensor product]] of $B$ with the de Rham complex of [[polynomial differential forms on the n-simplex]] $\Omega_{poly}^\bullet(\Delta^n)$. \begin{displaymath} Maps(A,B)_n \;\coloneqq\; Hom_{dgcAlg^{\geq 0}_k} \left( A, \; \Omega^\bullet_{poly}(\Delta^n) \otimes_k B \right) \end{displaymath} and whose face and degeneracy maps are the obvious ones induced from the fact that $\Omega_{poly}^\bullet \colon \Delta^{op} \to dgcAlg^{\geq 0}_k$ is canonically a [[simplicial object]] in dgc-algebras. We also call this the \emph{simplicial [[mapping space]]} from $A$ to $B$. This construction naturally extends to a [[functor]] \begin{displaymath} Maps(-,-) \;\colon\; (dgcAlg^{\geq 0}_k)^{op} \times dgcAlg^{\geq 0}_k \longrightarrow dgcAlg^{\geq 0}_k \end{displaymath} from the [[product category]] of the [[opposite category]] of [[dgc-algebras]] with the category itself. Observe that \begin{displaymath} Hom_{dgcAlg^{\geq 0}_k} \left( A, \; \Omega^\bullet_{poly}(\Delta^n) \otimes_k B \right) \;\simeq\; {}_{\Omega^\bullet_{poly}}Hom_{dgcAlg^{\geq 0}_k} \left( \Omega^\bullet_{poly}(\Delta^n) \otimes_k A \,,\, \Omega^\bullet_{poly}(\Delta^n) \otimes_k B \right) \,, \end{displaymath} where on the right we have those dg-algebra homomorphism which in addition preserves the left [[dg-module]] structure over $\Omega^\bullet_{poly}(\Delta^n)$. This induces for any three $A,B,C \in dgcAlg^{\geq 0}_k$ a [[composition]] homomorphism of [[simplicial sets]] out of the [[Cartesian product]] of mapping spaces \begin{displaymath} \circ^{sSet}_{A,B,C} \;\colon\; Maps(A,B) \times Maps(B,C) \longrightarrow Maps(A,C) \,. \end{displaymath} \end{defn} (\hyperlink{BousfieldGugenheim76}{Bousfield-Gugenheim 76, 5.1}) \begin{remark} \label{}\hypertarget{}{} The set of 0-simplices of of the [[mapping space]] $Maps(A,B)$ in def. \ref{MappingSpaceSimOndgcCochainAlgebrasInNonNegDegrees} is [[natural isomorphism|naturally isomorphic]] to the ordinary [[hom-set]] of dg-algebras: \begin{displaymath} Maps(A,B)_0 \simeq Hom_{dgcAlg^{\geq 0}_k}(A,B) \end{displaymath} and under this identification the two notions of [[composition]] agree. \end{remark} Definition \ref{MappingSpaceSimOndgcCochainAlgebrasInNonNegDegrees} makes $dgcAlg^{\geq 0}_k$ an [[sSet]]-[[enriched category]] (``[[simplicial category]]''). The follows says that it is also [[powering|powered]], not over all of $sSet$, but over finite simplicial sets: \begin{prop} \label{PoweringOfdgcCchainAlgebrasInNonNegativeDegreeOverFiniteSimplicialSets}\hypertarget{PoweringOfdgcCchainAlgebrasInNonNegativeDegreeOverFiniteSimplicialSets}{} \textbf{(powering over finite simplicial sets)} For $A, B \in dgcAlg^{\geq 0}_k$ and $S \in$ [[sSet]], there is a [[natural transformation]] \begin{displaymath} Hom_{dgcAlg^{\geq}_k}(A, \Omega^\bullet_{poly}(S) \otimes_k B) \longrightarrow Hom_{sSet}( S, Maps(A,B) ) \end{displaymath} from the [[hom-set]] of [[dgc-algebras]] into the [[tensor product]] with the [[polynomial differential forms on n-simplices]] from def. \ref{MappingSpaceSimOndgcCochainAlgebrasInNonNegDegrees} to the [[hom-set]] in [[simplicial sets]] into the simplicial [[mapping space]] from def. \ref{MappingSpaceSimOndgcCochainAlgebrasInNonNegDegrees}. Moreover, this morphism is an [[isomorphism]] if one of the following conditions holds: \begin{itemize}% \item $S$ is a [[finite set|finite]] [[simplicial set]]; \item $B$ is of [[finite type]] (def. \ref{dgcCochainAlgebraInNonNegDegreeOfFiniteType}). \end{itemize} \end{prop} (\hyperlink{BousfieldGugenheim76}{Bousfield-Gugenheim 76, lemma 5.2}) \begin{prop} \label{}\hypertarget{}{} \textbf{(pullback powering axiom)} Let $i \colon V \to W$ and $p \colon X \to Y$ be two [[morphisms]] in $dgcAlg^{\geq 0}_k$. Then their [[pullback power]] with respect to the simplicial [[mapping space]] functor (def. \ref{MappingSpaceSimOndgcCochainAlgebrasInNonNegDegrees}) \begin{displaymath} p^i \;\colon\; Maps(W,X) \longrightarrow Maps(V,X) \underset{Maps(V,Y)}{\times} Maps(W,Y) \end{displaymath} is \begin{enumerate}% \item a [[Kan fibration]] if $i$ is a cofibration and $p$ a fibration in the projective [[model category]] structure from prop. \ref{IndeedProjectiveModelStructureOnCdgAlg}; \item in addition a [[weak homotopy equivalence]] (i.e. a weak equivalence in the [[classical model structure on simplicial sets]]) if at least one of $i$ or $p$ is a weak equivalence in the projective model structure from prop. \ref{IndeedProjectiveModelStructureOnCdgAlg}. \end{enumerate} \end{prop} (\hyperlink{BousfieldGugenheim76}{Bousfield-Gugenheim 76, prop. 5.3}) \begin{remark} \label{}\hypertarget{}{} Prop. \ref{PoweringOfdgcCchainAlgebrasInNonNegativeDegreeOverFiniteSimplicialSets} \emph{would} say that $(dgcAlg^{\geq 0}_k)_{proj}$ is a [[simplicial model category]] with respect to the simplicial enrichment from def. \ref{MappingSpaceSimOndgcCochainAlgebrasInNonNegDegrees} were it not for the fact that prop. \ref{PoweringOfdgcCchainAlgebrasInNonNegativeDegreeOverFiniteSimplicialSets} gives the [[powering]] only over finite simplicial sets. \end{remark} \hypertarget{relation_to_cosimplicial_commutative_algbras}{}\paragraph*{{Relation to cosimplicial commutative algbras}}\label{relation_to_cosimplicial_commutative_algbras} The [[monoidal Dold-Kan correspondence]] gives a [[Quillen equivalence]] to the [[model structure on cosimplicial algebras|projective model structure on cosimplicial commutative algebras]] $(cAlg_k^{\Delta})_{proj}$. \hypertarget{CommVsNoncomm}{}\paragraph*{{Commutative vs. non-commutative dg-algebras}}\label{CommVsNoncomm} \begin{quote}% this needs harmonization \end{quote} \begin{prop} \label{}\hypertarget{}{} The [[forgetful functor]] \begin{displaymath} F dgcAlg_k \to dgAlg_k \end{displaymath} from (graded-)commutative [[dg-algebra]]s to dg-algebras is the [[right adjoint]] part of a [[Quillen adjunction]] \begin{displaymath} Ab \colon dgAlg \stackrel{\leftarrow}{\to} CdgAlg : F \end{displaymath} \end{prop} \begin{quote}% boundedness? \end{quote} \begin{proof} The forgetful functor clearly preserves fibrations and cofibrations. It has a [[left adjoint]], the free abelianization functor $Ab$, which sends a [[dg-algebra]] $A$ to its quotient $A/[A,A]$. \end{proof} \begin{theorem} \label{}\hypertarget{}{} Let the ground [[ring]] $k$ be a [[field]] of [[characteristic zero]]. Then every [[dg-algebra]] $A$ which has the structure of an [[algebra over an operad|algebra over]] the [[E-k-operad|E-∞ operad]] has a [[dg-algebra]] morphism $A \to A_c$ to a commutative dg-algebra $A_c$ which is \begin{itemize}% \item a morphism of [[E-k-operad|E-∞ algebras]] (where $A_c$ has the obvious [[E-k-operad|E-∞ algebras]] structure) \item a weak weak equivalence in the model structure on dg-algebras (i.e. a [[quasi-isomorphism]] of the underlying cochain complexes). \end{itemize} \end{theorem} This is in (\hyperlink{KrizMay95}{Kriz-May 95, II.1.5}). So this says that the weak equivalence classes of the commutative dg-algebras in the model category of all dg-algebras already exhaust the most general non-commutative but homotopy-commutative dg-algebras. \begin{remark} \label{HomotopyFaithfulnessOfforgettingCommutativity}\hypertarget{HomotopyFaithfulnessOfforgettingCommutativity}{} Discussion of a restricted kind of homotopy-faithfulness of the forgetful functor from the homotopy theory of commutative to not-necessarily commutative dg-algebras is in (\hyperlink{Amrani14}{Amrani 14}). \end{remark} \hypertarget{Unbounded}{}\subsection*{{Unbounded dg-algebras}}\label{Unbounded} We discuss now the case of unbounded dg-algebras. For these there is no longer the [[monoidal Dold-Kan correspondence]] available. Instead, these can be understood as arising naturally as function $\infty$-algebras in the [[derived geometry|derived]] [[dg-geometry]] over formal duals of bounded dg-algebras, see [[function algebras on ∞-stacks]]. \hypertarget{GradingsAndConventions}{}\subsubsection*{{Gradings and conventions}}\label{GradingsAndConventions} In [[derived geometry]] two categorical gradings interact: a [[cohesive (∞,1)-topos|cohesive]] $\infty$-groupoid $X$ has a space of [[k-morphism]]s $X_k$ for all non-negative $k$, and each such has itself a \emph{[[simplicial T-algebra]]} of functions with a component in each non-positive degree. But the directions of the face maps are opposite. We recall the grading situation from [[function algebras on ∞-stacks]]. Functions on a bare $\infty$-groupoid $K$, modeled as a [[simplicial set]], form a [[cosimplicial algebra]] $\mathcal{O}(K)$, which under the [[monoidal Dold-Kan correspondence]] identifies with a cochain [[dg-algebra]] (meaning: with positively graded differential) in non-negative degree \begin{displaymath} \left( \itexarray{ \vdots \\ \downarrow \downarrow \downarrow \downarrow \\ K_2 \\ \downarrow^{\partial_0} \downarrow^{\partial_1} \downarrow^{\partial_2} \\ K_1 \\ \downarrow^{\partial_0} \downarrow^{\partial_1} \\ K_0 } \right) \;\;\;\;\; \stackrel{\mathcal{O}}{\mapsto} \;\;\;\;\; \left( \itexarray{ \vdots \\ \uparrow \uparrow \uparrow \uparrow \\ \mathcal{O}(K_2) \\ \uparrow^{\partial_0^*} \uparrow^{\partial_1^*} \uparrow^{\partial_2^*} \\ \mathcal{O}(K_1) \\ \uparrow^{\partial_0^*} \uparrow^{\partial_1^*} \\ \mathcal{O}(K_0) } \right) \;\;\;\;\; \stackrel{\sim}{\leftrightarrow} \;\;\;\;\; \left( \itexarray{ \cdots \\ \uparrow^{\mathrlap{\sum_i (-1)^i \partial_i^*}} \\ A_2 \\ \uparrow^{\mathrlap{\sum_i (-1)^i \partial_i^*}} \\ A_1 \\ \uparrow^{\mathrlap{\sum_i (-1)^i \partial_i^*}} \\ A_0 \\ \uparrow \\ 0 \\ \uparrow \\ 0 \\ \uparrow \\ \vdots } \right) \,. \end{displaymath} On the other hand, a representable $X$ has itself a \emph{[[simplicial T-algebra]]} of functions, which under the monoidal Dold-Kan correspondence also identifies with a cochain dg-algebra, but then necessarily in non-positive degree to match with the above convention. So we write \begin{displaymath} \mathcal{O}(X) \;\;\;\;\; = \;\;\;\;\; \left( \itexarray{ \mathcal{O}(X)_0 \\ \uparrow \uparrow \\ \mathcal{O}(X)_{-1} \\ \uparrow \uparrow \uparrow \\ \mathcal{O}(X)_{-2} \\ \uparrow \uparrow \uparrow \uparrow \\ \vdots } \right) \;\;\;\;\; \stackrel{\sim}{\leftrightarrow} \;\;\;\;\; \left( \itexarray{ \vdots \\ \uparrow \\ 0 \\ \uparrow \\ 0 \\ \uparrow \\ \mathcal{O}(X)_0 \\ \uparrow \\ \mathcal{O}(X)_{-1} \\ \uparrow \\ \mathcal{O}(X)_{-2} \\ \uparrow \\ \vdots } \right) \,. \end{displaymath} Taking this together, for $X_\bullet$ a general [[∞-stack]], its function algebra is generally an \emph{unbounded} cochain dg-algebra with mixed contributions as above, the simplicial degrees contributing in the positive direction, and the homological resolution degrees in the negative direction: \begin{displaymath} \mathcal{O}(X_\bullet) \;\;\;\;\; = \;\;\;\;\; \left( \itexarray{ \vdots \\ \uparrow \\ \bigoplus_{k-p = q} \mathcal{O}(X_k)_{-p} \\ \uparrow \\ \vdots \\ \uparrow^d \\ \mathcal{O}(X_1)_0 \oplus \mathcal{O}(X_2)_{-1} \oplus \mathcal{O}(X_3)_{-2} \oplus \cdots \\ \uparrow^{d} \\ \mathcal{O}(X_0)_0 \oplus \mathcal{O}(X_1)_{-1} \oplus \mathcal{O}(X_2)_{-2} \oplus \cdots \\ \uparrow^{d} \\ \mathcal{O}(X_0)_{-1} \oplus \mathcal{O}(X_1)_{-2} \oplus \mathcal{O}(X_2)_{-3}\oplus \cdots \\ \uparrow^{d} \\ \vdots } \right) \,. \end{displaymath} \hypertarget{definition_8}{}\subsubsection*{{Definition}}\label{definition_8} \begin{theorem} \label{}\hypertarget{}{} For $k$ a [[field]] of [[characteristic]] 0 let \begin{displaymath} cdgAlg = CMon(Ch_\bullet(k)) \end{displaymath} be the category of undounded commutative dg-algebras. With fibrations the degreewise surjections and weak equivalences the [[quasi-isomorphism]]s this is a \begin{itemize}% \item [[model category]] \end{itemize} which is \begin{itemize}% \item [[proper model category|proper]]; \item [[combinatorial model category|combinatorial]]. \end{itemize} \end{theorem} The existence of the model structure follows from the general discussion at [[model structure on dg-algebras over an operad]]. Properness and combinatoriality is discussed in (\hyperlink{ToenVezzosi}{To\"e{}nVezzosi}): \begin{itemize}% \item in lemma 2.3.1.1 they state that $cdgAlg_+$ constitutes the first two items in a triple which they call an \emph{HA context} . \item this implies their assumption 1.1.0.4 which asserts properness and combinatoriality \end{itemize} Discussion of cofibrations in $dgAlg_{proj}$ is in (\hyperlink{Keller}{Keller}). \hypertarget{properties_2}{}\subsubsection*{{Properties}}\label{properties_2} \hypertarget{properness}{}\paragraph*{{Properness}}\label{properness} Let $cdgAg_k$ be the projective model structure on commutative unbounded dg-algebras from above. This is a [[proper model category]]. See MO discussion \href{http://mathoverflow.net/q/204414/381}{here}. \hypertarget{derived_tensor_product}{}\paragraph*{{Derived tensor product}}\label{derived_tensor_product} Let $cdgAg_k$ be the projective model structure on commutative unbounded dg-algebras from above \begin{prop} \label{}\hypertarget{}{} For cofibrant $A \in cdgAlg_k$, the functor \begin{displaymath} A\otimes_k (-) : k Mod \to A Mod \end{displaymath} preserves [[quasi-isomorphism]]s. For $A,B \in cdgAlg_k$, their [[derived functor|derived]] [[coproduct]] in $k Mod$ coincides in the [[homotopy category]] with the derived [[tensor product]] in $k Mod$: the morphism \begin{displaymath} A \coprod_k^{L} B \stackrel{}{\to} A \otimes_k^L B \end{displaymath} is an isomorphism in $Ho(k Mod)$. \end{prop} This follows by the above with (\hyperlink{ToenVezzosi}{To\"e{}nVezzosi, assumption 1.1.0.4, and page 8}). \hypertarget{SimplicialHomObjects}{}\paragraph*{{Derived hom-functor}}\label{SimplicialHomObjects} The model structure on unbounded dg-algebras is \emph{almost} a [[simplicial model category]]. See the section \emph{\href{model+structure+on+dg-algebras+over+an+operad#SimplicialEnrichment}{simplicial enrichment}} at \emph{[[model structure on dg-algebras over an operad]]} for details. \begin{defn} \label{}\hypertarget{}{} Let $k$ be a [[field]] of [[characteristic]] 0. Let $\Omega^\bullet_{poly} : sSet \to (cdgAlg_k)^{op}$ be the functor that assigns polynomial [[differential forms on simplices]]. For $A,B \in dgcAlg_k$ define the [[simplicial set]] \begin{displaymath} cdgAlg_k(A,B) : ([n] \mapsto Hom_{cdgAlg_k}(A, B \otimes_k \Omega^\bullet_{poly}(\Delta[n])) \,. \end{displaymath} This extends to a functor \begin{displaymath} cdgAlg_k(-,-) : cdgAlg_k^{op} \times cdgAlg_k \to sSet \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} The functor $cdgAlg_k(-,-)$ satisfies the dual of the [[pushout-product axiom]]: for $i : A \to B$ any cofibration in $cdgAlg_k$ and $p : X \to Y$ any fibration, the canonical morphism \begin{displaymath} (i^*, p_*) : cdgalg_k(A,B) \to cdgAlg_k(A,X) \times_{cdgAlg_k(A,Y)} cdgAlg_k(B,Y) \end{displaymath} is a [[Kan fibration]], which is acyclic if $i$ or $p$ is. \end{prop} This implies in particular that for $A$ cofibrant, $cdgAlg_k(A,B)$ is a [[Kan complex]]. The proof works along the lines of (\hyperlink{BousfieldGugenheim76}{Bousfield-Gugenheim 76, prop. 5.3}). See also the discussion at [[model structure on dg-algebras over an operad]]. \begin{proof} We give the proof for a special case. The general case is analogous. We show that for $A$ cofibrant, and for any $B$ (automatically fibrant), $cdgAlg_k(A,B)$ is a [[Kan complex]]. By a standard fact in [[rational homotopy theory]] (due to \hyperlink{BousfieldGugenheim76}{Bousfield-Gugenheim 76}, discussed at [[differential forms on simplices]]) we have that $\Omega^\bullet_{poly} : sSet \to (cdgAlg^+_k)^{op}$ is a left [[Quillen adjunction|Quillen functor]], hence in particular sends acyclic cofibrations to acyclic cofibrations, hence acyclic [[monomorphism]]s of [[simplicial set]]s to acyclic fibrations of [[dg-algebra]]s. Specifically for each [[horn]] inclusion $\Lambda[n]_k \hookrightarrow \Delta[n]$ we have that the restriction map $\Omega^\bullet_{poly}(\Delta[n]) \to \Omega^\bullet_{poly}(\Lambda[n]_k)$ is an acyclic fibration in $cdgAlg_k^*$, hence in $cdgAlg_k$. A $k$-horn in $cdgAlg_k(A,B)$ is a morphism $A \to B \otimes \Omega^\bullet_{poly}(\Lambda[n]_k)$. A filler for this horn is a lift $\sigma$ in \begin{displaymath} \itexarray{ && B \otimes \Omega^\bullet_{poly}(\Delta[n]) \\ & {}^{\mathllap{\sigma}}\nearrow & \downarrow \\ A &\to& B \otimes \Omega^\bullet_{poly}(\Lambda[n]_k) } \,. \end{displaymath} If $A$ is cofibrant, then such a lift does always exist. \end{proof} \begin{prop} \label{}\hypertarget{}{} For $A \in cdgAlg$ cofibrant, $cdgAlg_k(A,B)$ is the correct [[derived hom-space]] \begin{displaymath} cdgAlg_k(A,B) \simeq \mathbb{R}Hom(A,B) \,. \end{displaymath} \end{prop} \begin{proof} By the assumption that $A$ is cofibrant and according to the facts discussed at [[derived hom-space]], we need to show that \begin{displaymath} s B : [n] \mapsto B\otimes_k \Omega^\bullet_{poly}(\Delta[n]) \end{displaymath} is a [[simplicial resolution|resolution]], or \emph{simplicial frame} for $B$. (Notice that every object is fibrant in $cdgAlg_k$). Since polynomial differential forms are acyclic on simplices (discussed \href{http://nlab.mathforge.org/nlab/show/differential+forms+on+simplices}{here}) it follows that \begin{displaymath} const B \to s B \end{displaymath} is degreewise a weak equivalence. It remains to show that $s A$ is fibrant in the [[Reedy model structure]] $[\Delta^{op}, cdgAlg_k]_{Reedy}$. One finds that the matching object is given by \begin{displaymath} (match s B)_k = B \otimes \Omega^\bullet_{poly}(\partial \Delta[k]) \,. \end{displaymath} Therefore $s B$ is Reedy fibrant if in each degree the morphism \begin{displaymath} (s B_k \to (match s B)_k ) = (\Omega^\bullet_{poly}(\partial \Delta[k] \hookrightarrow \Delta[k])) \end{displaymath} is a fibration. But this follows from the fact that $\Omega^\bullet_{poly} : sSet \to cdgAlg_k^{op}$ is a left [[Quillen adjunction|Quillen functor]] (as discussed at [[differential forms on simplices]]). \end{proof} \hypertarget{DerivedCopowering}{}\paragraph*{{Derived copowering over $sSet$}}\label{DerivedCopowering} We discuss a concrete model for the $(\infty,1)$-copowering of $(cdgAlg_k)^\circ$ over [[∞Grpd]] in terms of an operation of $cdgAlg_k$ over [[sSet]]. First notice a basic fact about ordinary commutative algebras. \begin{prop} \label{}\hypertarget{}{} In $CAlg_k$ the [[coproduct]] is given by the [[tensor product]] over $k$: \begin{displaymath} \left( \itexarray{ A &\stackrel{i_A}{\to}& A \coprod B &\stackrel{i_B}{\leftarrow}& B } \right) \simeq \left( \itexarray{ A &\stackrel{Id_A \otimes_k e_B}{\to}& A \otimes_k B & \stackrel{e_A \otimes Id_B}{\leftarrow}& B } \right) \end{displaymath} \end{prop} \begin{proof} We check the [[universal property]] of the coproduct: for $C \in CAlg_k$ and $f,g : A,B \to C$ two morphisms, we need to show that there is a unique morphism $(f,g) : A \otimes_k B \to C$ such that the diagram \begin{displaymath} \itexarray{ A &\stackrel{Id_A \otimes e_B}{\to}& A \otimes_k B &\stackrel{e_A \otimes Id_B}{\leftarrow}& B \\ & {}_{\mathllap{f}}\searrow & \downarrow^{\mathrlap{(f,g)}} & \swarrow_{\mathrlap{g}} \\ && C } \end{displaymath} commutes. For the left triangle to commute we need that $(f,g)$ sends elements of the form $(a,e_B)$ to $f(a)$. For the right triangle to commute we need that $(f,g)$ sends elements of the form $(e_A, b)$ to $g(b)$. Since every element of $A \otimes_k B$ is a product of two elements of this form \begin{displaymath} (a,b) = (a,e_B) \cdot (e_A, b) \end{displaymath} this already uniquely determines $(f,g)$ to be given on elements by the map \begin{displaymath} (a,b) \mapsto f(a) \cdot g(b) \,. \end{displaymath} That this is indeed an $k$-algebra homomorphism follows from the fact that $f$ and $g$ are \end{proof} \begin{remark} \label{}\hypertarget{}{} For these derivations it is crucial that we are working with commutative algebras. \end{remark} \begin{cor} \label{}\hypertarget{}{} We have that the [[copower]]ing of $A$ with the map of sets from two points to the single point \begin{displaymath} (* \coprod * \to *) \cdot A \simeq ( A \otimes_k A \stackrel{\mu}{\to} A ) \end{displaymath} is the product morphism on $A$. And that the tensoring with the map from the empty set to the point \begin{displaymath} (\emptyset \to *)\cdot A \simeq (k \stackrel{e_A}{\to} A) \end{displaymath} is the unit morphism on $A$. Generally, for $f : S \to T$ any map of sets we have that the tensoring \begin{displaymath} (S \stackrel{f}{\to} T) \cdot A = A^{\otimes_k |S|} \to A^{\otimes_k |T|} \end{displaymath} is the morphism between [[tensor power]]s of $A$ of the cardinalities of $S$ and $T$, respectively, whose component over a copy of $A$ on the right corresponding to $t \in T$ is the iterated product $A^{\otimes_k |f^{-1}\{t\}|} \to A$ on as many tensor powers of $A$ as there are elements in the preimage of $t$ under $f$. \end{cor} The analogous statements hold true with $CAlg_k$ replaced by $cdgAlg_k$: for $S \in sSet$ and $A \in cdgAlg_k$ we obtain a simplicial cdg-algebra \begin{displaymath} S \cdot A \in cdgAlg_k^{\Delta^{op}} \end{displaymath} by the ordinary degreewise [[copower]]ing over [[Set]], using that $cdgAlg_k$ has coproducts (equal to the tensor product over $k$). This is equivalently a commutative monoid in simplicial unbounded chain complexes \begin{displaymath} cdgAlg_k^{\Delta^{op}} \simeq CMon(Ch^\bullet(k)^{\Delta^{op}}) \,. \end{displaymath} By the logic of the [[monoidal Dold-Kan correspondence]] the symmetric [[lax monoidal functor|lax monoidal]] [[Moore complex]] functor (via the [[Eilenberg-Zilber map]]) sends this to a commutative [[monoid]] in non-positively graded cochain complexes in unbounded cochain complexes \begin{displaymath} C^\bullet(S \cdot A) \in CMon(Ch^\bullet_-(Ch^\bullet(k))) \,. \end{displaymath} Since the [[total complex]] functor $Tot : Ch^\bullet(Ch^\bullet(k)) \to Ch^\bullet(k)$ is itself symmetric lax monoidal (\ldots{}), this finally yields \begin{displaymath} Tot C^\bullet(S \cdot A) \in CMon(Ch^\bullet(k)) \simeq cdgAlg_k \end{displaymath} \begin{defn} \label{}\hypertarget{}{} Define the functor \begin{displaymath} CC : sSet \times cdgAlg \to cdgAlg \end{displaymath} by \begin{displaymath} CC(S,A) := Tot C^\bullet(S \cdot A) \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} We have \begin{displaymath} CC(Y,A)^n := \bigoplus_{k \geq 0} (A^{\otimes_k |Y_k| })_{n+k} \end{displaymath} \end{remark} This appears essentially (\ldots{}) as (\hyperlink{GinotTradlerZeinalian}{GinotTradlerZeinalian, def 3.1.1}). \begin{prop} \label{}\hypertarget{}{} The [[(∞,1)-limit|(∞,1)-copowering]] of $(dgcAlg_k)^\circ$ over [[∞Grpd]] is modeled by the [[derived functor]] of $CC$. \end{prop} This follows from (\hyperlink{GinotTradlerZeinalian}{GinotTradlerZeinalian, theorem 4.2.7}), which asserts that the [[derived functor]] of this tensoring is the unique [[(∞,1)-functor]], up to equivalence, satisfying the axioms of $(\infty,1)$-copowering. \begin{prop} \label{}\hypertarget{}{} The functor \begin{displaymath} CC : sSet \times cdgAlg_k \to cdgAlg_k \end{displaymath} preserves weak equivalences in both arguments. \end{prop} This is essentially due to (\hyperlink{Pirashvili}{Pirashvili}). The full statement is (\hyperlink{GinotTradlerZeinalian}{GinotTradlerZeinalian, prop. 4.2.1}). \begin{remark} \label{}\hypertarget{}{} This means that the assumption for the copowering models of higher order [[Hochschild cohomology]] are satsified in $cdgAlg_k$ which are described in the section is satisfied: this means that for $A \in cdgAlg$ and $S \in sSet$, $CC(S,A)$ is a model for the function $\infty$-algebra on the [[free loop space object]] of $Spec A$. See the section for more details. \end{remark} \hypertarget{DerivedPowering}{}\paragraph*{{Derived powering over $sSet$}}\label{DerivedPowering} \begin{prop} \label{}\hypertarget{}{} Let $S \in \infty Grpd$ be presented by a degreewise finite [[simplicial set]] (which we denote by the same symbol). Then the [[homotopy limit]] in $cdgAlg_k$ over the $S$-shaped diagram constant on $k$ is given by $\Omega^\bullet_{poly}(S)$. \begin{displaymath} \mathbb{R}{\lim_{\leftarrow}}_S const k \simeq \Omega^\bullet_{poly}(S) \,. \end{displaymath} \end{prop} \begin{proof} We show dually that for degreewise finite $S$ the assignment $(S, Spec A) \mapsto Spec (\Omega^\bullet_{poly}(S) \otimes A)$ models the $\infty$-copowering in $cdgAlg_k^{op}$. By the discussion at it is sufficient to to establish an equivalence \begin{displaymath} (dgcAlg_{k}^{op})^\circ(Spec (\Omega^\bullet_{poly}(S) \otimes A), Spec B) \simeq \infty Grpd(S, (dgcAlg_{k}^{op})^\circ(Spec A, Spec B)) \end{displaymath} natural in $B$. Consider a cofibrant model of $B$, which we denote by the same symbol. The we compute with 1-categorical [[end]]/[[coend]] calculus \begin{displaymath} \begin{aligned} sSet(S, cdgAlg_k^{op}(Spec A,Spec B)) & \simeq \int^{[r] \in\Delta} \Delta[r] \cdot Hom_{sSet}(S \times \Delta[r], cdgAlg_k^{op}(Spec A, Spec B)) \\ & \simeq \int^{[r] \in\Delta} \Delta[r] \cdot \int_{[k] \in \Delta} Hom_{Set}(S_k \times \Delta[k,r], Hom_{cdgAlg_k^{op}}(Spec \Omega^\bullet_{poly}(\Delta^k) \times Spec A, Spec B)) \\ & \simeq \int^{[r] \in\Delta} \Delta[r] \cdot \int_{[k] \in \Delta} Hom_{cdgAlg_k^{op}}((S_k \times \Delta[k,r]) \cdot Spec \Omega^\bullet_{poly}(\Delta^k) \times Spec A, Spec B)) \\ & \simeq \int^{[r] \in\Delta} \Delta[r] \cdot Hom_{cdgAlg_k^{op}}(\int^{[k] \in \Delta} (S_k \times \Delta[k,r]) \cdot Spec \Omega^\bullet_{poly}(\Delta^k) \times Spec A, Spec B)) \\ & \simeq \int^{[r] \in\Delta} \Delta[r] \cdot Hom_{cdgAlg_k^{op}}(Spec \Omega^\bullet_{poly}(S \times \Delta[r]) \times Spec A, Spec B)) \end{aligned} \,, \end{displaymath} where all steps are [[isomorphism]]s and the dot denotes the ordinary 1-categorical [[copower]]ing of the 1-category $cdgAlg^{op}$ over [[Set]]. In the last step we are using that the [[tensor product]] commutes with finite limits of dg-algebras. (This is where the finiteness assumption is needed). Now we use that $\Omega^\bullet_{poly}$ preserves [[product]]s up to [[quasi-isomorphism]] (as discussed ) \begin{displaymath} \Omega^\bullet_{poly}(S \times \Delta[r]) \simeq \Omega^\bullet_{poly}(S) \otimes \Omega_{poly}^\bullet(\Delta[r]) \,. \end{displaymath} This being a weak equivalence between fibrant objects and since $B$ is assumed cofibrant, we have by the \hyperlink{SimplicialHomObjects}{above discussion} of the derived hom-functor (and using the [[factorization lemma]]) a weak equivalence \begin{displaymath} \cdots \simeq \int^{[r] \in\Delta} \Delta[r] \cdot Hom_{cdgAlg_k^{op}}(Spec \Omega^\bullet_{poly}(S) \times Spec \Omega^\bullet_{poly}\Delta[r]) \times Spec A, Spec B)) \,. \end{displaymath} Since all this is [[natural transformation|natural]] in $B$, this proves the claim. \end{proof} \hypertarget{PathObjectsForUnboundedCommutative}{}\paragraph*{{Path objects}}\label{PathObjectsForUnboundedCommutative} \begin{prop} \label{}\hypertarget{}{} For $A \in cdgAlg_k$, a [[path object]] \begin{displaymath} A \stackrel{\simeq}{\to} P(A) \stackrel{fib}{\to} A \times A \end{displaymath} for $A$ is given by \begin{displaymath} P(A) := A \otimes_k \Omega^\bullet_{poly}(\Delta[1]) \end{displaymath} \end{prop} This follows along the above lines. The statement appears for instance as (\hyperlink{Behrend}{Behrend, lemma 1.19}). \hypertarget{RelationToAInfinityAlgebras}{}\paragraph*{{Relation to $H \mathbb{Z}$-algebra spectra}}\label{RelationToAInfinityAlgebras} For every [[ring spectrum]] $R$ there is the notion of [[algebra spectra]] over $R$. Let $R := H \mathbb{Z}$ be the [[Eilenberg-MacLane spectrum]] for the [[integer]]s. Then unbounded dg-algebras (over $\mathbb{Z}$) are one model for $H \mathbb{Z}$-algebra spectra. \begin{prop} \label{}\hypertarget{}{} There is a [[Quillen equivalence]] between the standard [[model category]] structure for $H \mathbb{Z}$-[[algebra spectra]] and the model structure on unbounded differential graded algebras. \end{prop} See [[algebra spectrum]] for details. \hypertarget{RelationToEInfinityAlgebras}{}\paragraph*{{Relation to $\mathbb{E}_\infty$-algebras}}\label{RelationToEInfinityAlgebras} Commutative dg-algebras over a field $k$ of characteristic 0 constitute a presentation of [[E-infinity algebras]] over $k$ (Lurie, prop. A.7.1.4.11). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[model structure on differential graded-commutative superalgebras]] \item [[model structure on chain complexes]] \item [[model structure on dg-modules]] \item [[model structure on dg-operads]] \item [[model structure on dg-algebras over an operad]] \begin{itemize}% \item \textbf{model structure on dg-algebras} \item [[model structure on dg-categories]] \end{itemize} \item [[model structure on dg-coalgebras]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The cofibrantly generated model structure on [[differential graded-commutative algebras]] is surveyed usefully for instance on p. 6 of \begin{itemize}% \item [[Kathryn Hess]], \emph{Rational homotopy theory: a brief introduction} (\href{http://arxiv.org/abs/math.AT/0604626}{arXiv:math.AT/0604626}) \end{itemize} This makes use of the general discussion in section 3 of \begin{itemize}% \item [[Paul Goerss]], [[Kirsten Schemmerhorn]], \emph{Model categories and simplicial methods} Notes from lectures given at the University of Chicago, August 2004 (\href{http://arxiv.org/abs/math.AT/0609537}{arXiv}) \end{itemize} that obtains the model structure from the [[model structure on chain complexes]]. A standard textbook reference is section V.3 of \begin{itemize}% \item [[Sergei Gelfand]], [[Yuri Manin]], \emph{Methods of homological algebra}, transl. from the 1988 Russian (Nauka Publ.) original. Springer 1996. xviii+372 pp. 2nd corrected ed. 2002. \end{itemize} An original reference seems to be \begin{itemize}% \item [[Aldridge Bousfield]], V. Gugenheim, \emph{On PL deRham theory and rational homotopy type} Memoirs of the AMS 179 (1976) \end{itemize} For general \textbf{non-commutative} (or rather: not necessarily graded-commutative) dg-algebras a model structure is given in \begin{itemize}% \item [[Rick Jardine]], \emph{[[JardineModelDG.pdf:file]]} , Cyclic Cohomology and Noncommutative Geometry, Fields Institute Communications, Vol. 17, AMS (1997), 55-58. \end{itemize} This is also the structure used in \begin{itemize}% \item J.L. Castiglioni G. Corti\~n{}as, \emph{Cosimplicial versus DG-rings: a version of the Dold-Kan correspondence} (\href{http://arxiv.org/abs/math/0306289v2}{arXiv}) \end{itemize} where aspects of its relation to the [[model structure on cosimplicial rings]] is discussed. (See [[monoidal Dold-Kan correspondence]] for more on this). Disucssion of the model structure on unbounded dg-algebras over a field of characteristic 0 is in \begin{itemize}% \item [[Bertrand Toën]], [[Gabriele Vezzosi]], \emph{HAG II, geometric stacks and applicatons} (\href{http://arxiv.org/abs/math/0404373v4}{arXiv:math/0404373v4}) \end{itemize} A general discussion of algebras over an operad in unbounded chain complexes is in \begin{itemize}% \item [[Vladimir Hinich]], \emph{Homological algebra of homotopy algebras} Communications in algebra, 25(10). 3291-3323 (1997)(\href{http://arxiv.org/abs/q-alg/9702015}{arXiv:q-alg/9702015}, \emph{Erratum} (\href{http://arxiv.org/abs/math/0309453}{arXiv:math/0309453})) \end{itemize} A survey of some useful facts with an eye towards [[dg-geometry]] is in \begin{itemize}% \item [[Kai Behrend]], \emph{Differential graded schemes I: prefect resolving algebras} (\href{http://arxiv.org/abs/math/0212225}{arXiv:0212225}) \end{itemize} Discussion of cofibrations in unbounded dg-algebras are in \begin{itemize}% \item [[Bernhard Keller]], \emph{$A_\infty$-algebras, modules and functor categories} (\href{http://www.math.jussieu.fr/~keller/publ/ainffun.pdf}{pdf}) \end{itemize} The derived copowering of unbounded commutative dg-algebras over $sSet$ is discussed (somewhat implicitly) in \begin{itemize}% \item [[Grégory Ginot]], Thomas Tradler, Mahmoud Zeinalian, \emph{Derived higher Hochschild homology, topological chiral homology and factorization algebras}, (\href{http://arxiv.org/abs/1011.6483}{arxiv/1011.6483}) \end{itemize} The \emph{commutative} product on the dg-algebra of the higher order Hochschild complex is discussed in \begin{itemize}% \item [[Grégory Ginot]], Thomas Tradler, Mahmoud Zeinalian, \emph{A Chen model for mapping spaces and the surface product} (\href{http://arxiv.org/PS_cache/arxiv/pdf/0905/0905.2231v1.pdf}{pdf}) \end{itemize} The relation to [[E-infinity algebras]] is discussed in \begin{itemize}% \item [[Igor Kriz]] and [[Peter May]], \emph{Operads, algebras, modules and motives} , Ast\'e{}risque No 233 (1995) \item [[Jacob Lurie]], section 7.1 of \emph{Higher algebra} (\href{http://www.math.harvard.edu/~lurie/papers/higheralgebra.pdf}{pdf}) \end{itemize} The relation between commutative and non-commutative dgas is further discussed in \begin{itemize}% \item [[Ilias Amrani]], \emph{Comparing commutative and associative unbounded differential graded algebras over Q from homotopical point of view} (\href{http://arxiv.org/abs/1401.7285}{arXiv:1401.7285}) \item [[Ilias Amrani]], \emph{Rational homotopy theory of function spaces and Hochschild cohomology} (\href{http://arxiv.org/abs/1406.6269}{arXiv:1406.6269}) \end{itemize} For more see also at \emph{[[model structure on dg-algebras over an operad]]}. Discussion of [[homotopy limits]] and [[homotopy colimits]] of dg-algebras is in \begin{itemize}% \item [[Ben Walter]], \emph{Rational Homotopy Calculus of Functors} (\href{http://arxiv.org/abs/math/0603336}{arXiv:math/0603336}) \end{itemize} [[!redirects model structure on dg-rings]] [[!redirects model structure on dg-algebra]] [[!redirects Sullival algebra]] [[!redirects model structures on dg-algebras]] [[!redirects model structure on differential graded-commutative algebras]] [[!redirects model structures on differential graded-commutative algebras]] [[!redirects projective model structure on differential graded-commutative algebras]] [[!redirects projective model structures on differential graded-commutative algebras]] [[!redirects model structure on dgc-algebras]] [[!redirects model structures on dgc-algebras]] [[!redirects projective model structure on dgc-algebras]] [[!redirects projective model structures on dgc-algebras]] [[!redirects projective model structure on connective dgc-algebras]] [[!redirects projective model structures on connective dgc-algebras]] [[!redirects model structure on dgc-algebras]] [[!redirects model structures on dgc-algebras]] \end{document}