\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure on dg-categories} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{with_dwyerkan_weak_equivalences}{With Dwyer-Kan weak equivalences}\dotfill \pageref*{with_dwyerkan_weak_equivalences} \linebreak \noindent\hyperlink{WithMoritaEquivalences}{With Morita equivalences}\dotfill \pageref*{WithMoritaEquivalences} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[model structure on enriched categories]] gives in particular a model structure on dg-categories, called the \emph{Dwyer-Kan model structure}, which is analogous to the usual [[model structure on sSet-categories]] which models [[(infinity,1)-categories]]. There are interesting [[left Bousfield localizations]] of this model structure, called the \emph{quasi-equiconic} and \emph{Morita} model structures. Here the [[fibrant objects]] are the [[pretriangulated dg-categories]], resp. [[idempotent complete category|idempotent complete]] [[pretriangulated dg-categories]]. In characteristic zero, the Morita model structure is known to present the [[(infinity,1)-category]] of linear [[stable (infinity,1)-categories]] (\hyperlink{Cohn13}{Cohn 13}). \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} \hypertarget{with_dwyerkan_weak_equivalences}{}\subsubsection*{{With Dwyer-Kan weak equivalences}}\label{with_dwyerkan_weak_equivalences} \begin{theorem} \label{}\hypertarget{}{} Let $k$ be a [[commutative ring]]. Write $dgCat_k$ for the [[category]] of [[small category|small]] [[dg-categories]] over $k$. There is the structure of a [[cofibrantly generated model category]] on $dgCat_k$ where a dg-functor $F : A \to B$ is \begin{itemize}% \item a weak equivalence if \begin{enumerate}% \item for all objects $x,y \in A$ the component $F_{x,y} : A(x,y) \to B(F(x), F(y))$ is a [[quasi-isomorphism]] of [[chain complexes]]; \item the induced functor on [[homotopy categories]] $H^0(F)$ (obtained by taking degree 0 [[chain homology]] in each hom-object) is an [[equivalence of categories]]. \end{enumerate} \item a fibration if \begin{enumerate}% \item for all objects $x,y \in A$ the component $F_{x,y}$ is a degreewise surjection of chain complexes; \item for each [[isomorphism]] $F(x) \to Z$ in $H^0(B)$ there is a lift to an isomorphism in $H^0(A)$. \end{enumerate} \end{itemize} \end{theorem} This is due to (\hyperlink{Tabuada}{Tabuada}). \begin{remark} \label{}\hypertarget{}{} The definition is entirely analogous to the [[model structure on sSet-categories]]. Both are special cases of the [[model structure on enriched categories]]. \end{remark} \hypertarget{WithMoritaEquivalences}{}\subsubsection*{{With Morita equivalences}}\label{WithMoritaEquivalences} There is another model category structure with more weak equivalences, the \emph{Morita equivalences} (\hyperlink{Tabuada05}{Tabuada 05}). This is in fact the [[left Bousfield localization]] of the above model structure with respect to the Morita equivalences, i.e. functors $F: C \to D$ whose induced [[restriction of scalars]] functor $\mathbf Lf^* : \mathbf D(D) \to \mathbf D(C)$ is an [[equivalence of categories]]. The [[fibrant objects]] with respect to this model structure are the [[dg-categories]] A for which the canonical inclusion $H^0(A) \hookrightarrow \mathbf D(A)$ has its [[essential image]] stable under [[cones]], [[suspensions]], and [[direct sums]]. Hence the [[homotopy category]] with respect to this model structure is identified with the [[full subcategory]] of Ho(DGCat), the homotopy category of the Dwyer-Kan model structure, spanned by dg-categories of this form. This model structure is a presentation of the [[(∞,1)-category]] of [[stable (∞,1)-categories]] (\hyperlink{Cohn13}{Cohn 13}). The [[pretriangulated dg-category|pretriangulated envelope]] of [[Bondal]]-[[Kapranov]] is a [[fibrant replacement]] functor for the Morita model structure. The [[DG quotient]] of [[Drinfeld]] is a model for the [[homotopy cofibre]] with respect to the Morita model structure. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[model structure on dg-operads]] \item [[model structure on dg-algebras over an operad]] \begin{itemize}% \item [[model structure on dg-algebras]] \item \textbf{model structure on dg-categories} \end{itemize} \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The model structure on dg-categories is due to \begin{itemize}% \item [[Gonçalo Tabuada]], \emph{Une structure de cat\'e{}gorie de mod\`e{}les de Quillen sur la cat\'e{}gorie des dg-cat\'e{}gories} C. R. Acad. Sci. Paris S\'e{}r. I Math. 340 (1) (2005), 15--19. \end{itemize} It is reproduced as theorem 4.1 in \begin{itemize}% \item [[Bernhard Keller]], \emph{On differential graded categories} (\href{http://atlas.mat.ub.es/grgta/articles/Keller.pdf}{pdf}) \end{itemize} Discussion of [[internal homs]] of dg-categories in terms of refined [[Fourier-Mukai transforms]] is in \begin{itemize}% \item [[Bertrand Toën]], \emph{The homotopy theory of dg-categories and derived Morita theory}, Invent. Math. 167 (2007), 615--667 \end{itemize} Discussion of [[internal homs]] of dg-categories using (just) the structure of a [[category of fibrant objects]] is in \begin{itemize}% \item Alberto Canonaco, Paolo Stellari, \emph{Internal Homs via extensions of dg functors} (\href{http://arxiv.org/abs/1312.5619}{arXiv:1312.5619}) \end{itemize} The derived internal Hom in the homotopy category of DG-categories is equivalent to the dg-category of A\_infty-functors. \begin{itemize}% \item [[Giovanni Faonte]], \emph{A-infinity functors and homotopy theory of DG-categories}, \href{http://arxiv.org/abs/1412.1255}{arXiv}. \end{itemize} A proof that the [[internal hom]] of Ho(DGCat) constructed by To\"e{}n is in fact the right [[derived functor]] of the internal hom of DGCat is in \begin{itemize}% \item [[Beatriz Rodriguez Gonzalez]], \emph{A derivability criterion based on the existence of adjunctions}, 2012, \href{http://arxiv.org/abs/1202.3359}{arXiv:1202.3359}. \end{itemize} There is also \begin{itemize}% \item David Rosoff, \emph{Mapping spaces of $A_\infty$-algebras} (\href{http://www.math.washington.edu/~rosoff/ainfs.pdf}{pdf}) \end{itemize} The model structure with Morita equivalences as weak equivalences is discussed in \begin{itemize}% \item [[Goncalo Tabuada]], \emph{Invariants additifs de dg-catgories}. Internat. Math. Res. Notices 53 (2005), 33093339. \end{itemize} That the Morita model structure on dg-categories presents the homotopy theory of $k$-linear [[stable (infinity,1)-categories]] was shown in \begin{itemize}% \item [[Lee Cohn]], \emph{Differential Graded Categories are k-linear Stable Infinity Categories} (\href{http://arxiv.org/abs/1308.2587}{arXiv:1308.2587}) \end{itemize} \end{document}