\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure on dg-coalgebras} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationTodgLieAlgbras}{Relation to dg-Lie algebras}\dotfill \pageref*{RelationTodgLieAlgbras} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[model category]] structure on the [[category]] of [[dg-coalgebras]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $k$ be a [[field]] of [[characteristic]] 0. \begin{prop} \label{TheCETangentAdjunction}\hypertarget{TheCETangentAdjunction}{} There is a pair of [[adjoint functors]] \begin{displaymath} (\mathcal{L} \dashv \mathcal{C}) \;\colon\; dgLieAlg_k \underoverset {\underset{\mathcal{C}}{\longrightarrow}} {\overset{\mathcal{L}}{\longleftarrow}} {\bot} dgCoCAlg_k \end{displaymath} between the category of [[dg-Lie algebras]]and that of dg [[cocommutative coalgebras]], where the [[right adjoint]] sends a dg-Lie algebra $(\mathfrak{g}_\bullet, [-,-])$ to its [[Chevalley-Eilenberg algebras|Chevalley-Eilenberg coalgebra]], whose underlying coalgebra is the [[free graded co-commutative coalgebra]] on $\mathfrak{g}[1]$ and whose differential is given on the tensor product of two generators by the Lie bracket $[-,-]$. \end{prop} For (pointers to) the details, see at \emph{\href{model%20structure%20on%20dg-Lie%20algebras#RelationToDgCoalgebras}{model structure on dg-Lie algebras -- Relation to dg-coalgebras}}. \begin{theorem} \label{}\hypertarget{}{} There exists a [[model category]] structure on $dgCoCAlg_k$ for which \begin{itemize}% \item the cofibrations are the (degreewise) [[injections]]; \item the weak equivalences are those morphisms that become [[quasi-isomorphisms]] under the functor $\mathcal{L}$ from prop. \ref{TheCETangentAdjunction}. \end{itemize} Moreover, this is naturally a [[simplicial model category]] structure. \end{theorem} This is (\hyperlink{Hinich98}{Hinich98, theorem, 3.1}). More details on this are in the relevant sections at \emph{[[model structure for L-infinity algebras]]}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationTodgLieAlgbras}{}\subsubsection*{{Relation to dg-Lie algebras}}\label{RelationTodgLieAlgbras} Throughout, let $k$ be of [[characteristic zero]]. \begin{defn} \label{CEfunctor}\hypertarget{CEfunctor}{} \textbf{(Chevalley-Eilenberg dg-coalgebra)} Write \begin{displaymath} CE \;\colon\; dgLieAlg_{k} \longrightarrow dgCocAlg_k \end{displaymath} for the [[Chevalley-Eilenberg algebra]] functor. It sends a dg-Lie algebra $(\mathfrak{g}, \partial, [-,-])$ to the [[dg-coalgebra]] \begin{displaymath} CE(\mathfrak{g},\partial,[-,-]) \;\coloneqq\; \left( \vee^\bullet \mathfrak{g}[1] ,\; D = \partial + [-,-] \right) \,, \end{displaymath} where on the right the extension of $\partial$ and $[-,-]$ to graded [[derivations]] is understood. \end{defn} For dg-Lie algebras concentrated in degrees $\geq n \geq 1$ this is due to (\hyperlink{Quillen}{Quillen 69, appendix B, prop 6.2}). For unbounded dg-algebras, this is due to (\hyperlink{Hinich98}{Hinich 98, 2.2.2}). \begin{defn} \label{LeftAdjointToCEfunctor}\hypertarget{LeftAdjointToCEfunctor}{} For $(X,D) \in dgCocalg_k$ write \begin{displaymath} \mathcal{L}(X,D) \coloneqq \left( F(\overline{X}[-1]),\; \partial \coloneqq D + (\Delta - 1 \otimes id - id \otimes 1) \right) \;\in dgLieAlg_k\; \end{displaymath} where \begin{enumerate}% \item $\overline{X} \coloneqq ker(\epsilon)$ is the [[kernel]] of the [[counit]], regarded as a [[chain complex]]; \item $F$ is the [[free Lie algebra]] functor (as graded Lie algebras); \item on the right we are extending $(\Delta - 1 \otimes id - id \otimes 1) \colon \overline{X} \to \overline{X} \otimes \overline{X}$ as a Lie algebra [[derivation]] \end{enumerate} \end{defn} For dg-Lie algebras concentrated in degrees $\geq n \geq 1$ this is due to (\hyperlink{Quillen}{Quillen 69, appendix B, prop 6.1}). For unbounded dg-algebras, this is due to (\hyperlink{Hinich98}{Hinich 98, 2.2.1}). \begin{prop} \label{CEAdjunction}\hypertarget{CEAdjunction}{} The [[functors]] from def. \ref{CEfunctor} and def. \ref{LeftAdjointToCEfunctor} are [[adjoint functor|adjoint]] to each other: \begin{displaymath} dgLieAlg_k \underoverset {\underset{CE}{\longrightarrow}} {\overset{\mathcal{L}}{\longleftarrow}} {\bot} dgCocAlg_k \,. \end{displaymath} Moreover, for $X \in dgCocAlg_k$ and $\mathfrak{g} \in dgLieAlg_k$ then the adjoint [[hom sets]] are [[natural isomorphism|naturally isomorphic]] \begin{displaymath} Hom(\mathcal{L}(X), \mathfrak{g}) \simeq Hom(X, CE(\mathfrak{g})) \simeq MC(Hom(\overline{X},\mathfrak{g})) \end{displaymath} to the [[Maurer-Cartan elements]] in the Hom-dgLie algebra from $\overline{X}$ to $\mathfrak{g}$. \end{prop} For dg-Lie algebras concentrated in degrees $\geq n \geq 1$ this is due to (\hyperlink{Quillen}{Quillen 69, appendix B, somewhere}). For unbounded dg-algebras, this is due to (\hyperlink{Hinich98}{Hinich 98, 2.2.5}). \begin{prop} \label{QuillenAdjunctionCE}\hypertarget{QuillenAdjunctionCE}{} The adjunction $(\mathcal{L} \dashv CE)$ from prop. \ref{CEAdjunction} is a [[Quillen adjunction]] between then projective [[model structure on dg-Lie algebras]] as the [[model structure on dg-coalgebras]] \begin{displaymath} (dgLieAlg_k)_{proj} \underoverset {\underset{CE}{\longrightarrow}} {\overset{\mathcal{L}}{\longleftarrow}} {\bot} (dgCocAlg_k)_{Quillen} \,. \end{displaymath} \end{prop} (\hyperlink{Hinich98}{Hinich 98, lemma 5.2.2, lemma 5.2.3}) Moreover: \begin{prop} \label{}\hypertarget{}{} In non-negatively graded dg-coalgebras, both [[Quillen functors]] $(\mathcal{L} \dashv CE)$ from prop. \ref{QuillenAdjunctionCE} preserve all [[quasi-isomorphisms]], and both the [[adjunction unit]] and the [[adjunction counit]] are quasi-isomorphisms. \end{prop} For dg-algebras in degrees $\geq n \geq 1$ this is (\hyperlink{Quillen76}{Quillen 76, theorem 7.5}). In unbounded degrees this is (\hyperlink{Hinich98}{Hinich 98, prop. 3.3.2}) \begin{theorem} \label{}\hypertarget{}{} The Quillen adjunctin from prop. \ref{QuillenAdjunctionCE} is a [[Quillen equivalence]]: \begin{displaymath} (dgLieAlg_k)_{proj} \underoverset {\underset{CE}{\longrightarrow}} {\overset{\mathcal{L}}{\longleftarrow}} {{}_{\phantom{qu}}\simeq_{Qu}} (dgCocAlg_k)_{Quillen} \,. \end{displaymath} \end{theorem} (\hyperlink{Hinich98}{Hinich 98, theorem 3.2}) using (\hyperlink{Quillen76}{Quillen 76 II 1.4}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[model structure on dg-comodules]] \item [[model structure for L-∞ algebras]] \item [[model structure on dg-Lie algebras]], [[model structure on simplicial Lie algebras]] \item [[model structure on coalgebras over a comonad]] \item [[rational homotopy theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} In [[characteristic zero]] and in positive degrees the model structure is due to \begin{itemize}% \item [[Dan Quillen]], section II.5 and appendix B of \emph{Rational homotopy theory}, Annals of Math., 90(1969), 205--295 (\href{http://www.jstor.org/stable/1970725}{JSTOR}, \href{http://www.math.northwestern.edu/~konter/gtrs/rational.pdf}{pdf}) \end{itemize} in non-negative degrees in \begin{itemize}% \item [[Ezra Getzler]], [[Paul Goerss]], \emph{A model category structure for differential graded coalgebras} (\href{http://www.math.northwestern.edu/~pgoerss/papers/model.ps}{ps}, [[GetzlerGoerss99.pdf:file]]) \end{itemize} and in unbounded degrees in \begin{itemize}% \item [[Vladimir Hinich]], \emph{DG coalgebras as formal stacks}, Journal of Pure and Applied Algebra Volume 162, Issues 2--3, 24 August 2001, Pages 209--250 (\href{http://arxiv.org/abs/math/9812034}{arXiv:math/9812034}) \item [[Jonathan Pridham]], \emph{Unifying derived deformation theories}, Adv. Math. 224 (2010), no.3, 772-826 (\href{http://arxiv.org/abs/0705.0344}{arXiv:0705.0344}) \end{itemize} See also \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Formal Moduli Problems]]} \end{itemize} Review with discussion of [[homotopy limits]] and [[homotopy colimits]] is in \begin{itemize}% \item [[Ben Walter]], section 5 of \emph{Rational Homotopy Calculus of Functors} (\href{http://arxiv.org/abs/math/0603336}{arXiv:math/0603336}) \end{itemize} [[!redirects model stucture on dg-coalgebras]] \end{document}