\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure on simplicial algebras} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{OverOrdinaryLawvereTheories}{For algebras over ordinary Lawvere theories}\dotfill \pageref*{OverOrdinaryLawvereTheories} \linebreak \noindent\hyperlink{ForAlgebrasOverSimplicialLawvereTheories}{For algebras over simplicial Lawvere theories}\dotfill \pageref*{ForAlgebrasOverSimplicialLawvereTheories} \linebreak \noindent\hyperlink{OtherCases}{Other cases}\dotfill \pageref*{OtherCases} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_homotopy_algebras}{Relation to homotopy $T$-algebras}\dotfill \pageref*{relation_to_homotopy_algebras} \linebreak \noindent\hyperlink{homotopy_groups}{Homotopy groups}\dotfill \pageref*{homotopy_groups} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{simplicial_associative_algebras}{Simplicial associative $k$-algebras}\dotfill \pageref*{simplicial_associative_algebras} \linebreak \noindent\hyperlink{simplicial_commutative_algebras}{Simplicial commutative $k$-algebras}\dotfill \pageref*{simplicial_commutative_algebras} \linebreak \noindent\hyperlink{simplicial_lie_algebras}{Simplicial Lie algebras}\dotfill \pageref*{simplicial_lie_algebras} \linebreak \noindent\hyperlink{SimplicialCommutativeHopfAlgebras}{Simplicial complete Hopf algebras}\dotfill \pageref*{SimplicialCommutativeHopfAlgebras} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $T$ a [[Lawvere theory]] and $T Alg$ the [[category]] of [[algebra over a Lawvere theory]], there is a [[model category]] structure on the category $T Alg^{\Delta^{op}}$ of [[simplicial object|simplicial]] $T$-algebras which models the $\infty$-algebras for $T$ regarded as an [[(∞,1)-algebraic theory]]. \hypertarget{details}{}\subsection*{{Details}}\label{details} First we consider the case of [[simplicial objects]] in algebras over an ordinary Lawvere theory: \begin{itemize}% \item \emph{\hyperlink{OverOrdinaryLawvereTheories}{For algebras over ordinary Lawvere theories}} \end{itemize} Then we generalize to the case that the Lawvere theory itself is simplicial: \begin{itemize}% \item \emph{\hyperlink{ForAlgebrasOverSimplicialLawvereTheories}{For algebras over simplicial Lawvere theories}} \end{itemize} \hypertarget{OverOrdinaryLawvereTheories}{}\subsubsection*{{For algebras over ordinary Lawvere theories}}\label{OverOrdinaryLawvereTheories} Recall that the [[(∞,1)-category of (∞,1)-presheaves]] $PSh_{(\infty,1)}(C^{op})$ itself is modeled by the [[model structure on simplicial presheaves]] \begin{displaymath} PSh_{(\infty,1)}(C^{op}) \simeq [C, sSet]^\circ \,, \end{displaymath} where we regard $C$ as a [[Kan complex]]-[[enriched category]] and have on the right the [[sSet]]-[[enriched functor category]] with the projective or injective model structure, and $(-)^\circ$ denoting the full enriched subcategory on fibrant-cofibrant objects. This says in particular that every weak $(\infty,1)$-functor $f : C \to \infty \mathrm{Grp}$ is equivalent to a \emph{rectified} one $F : C \to KanCplx$. And $f \in PSh_{(\infty,1)}(C^{op})$ belongs to $Alg_{(\infty,1)}(C)$ if $F$ preserves finite products \emph{weakly} in that for $\{c_i \in C\}$ a finite collection of objects, the canonical natural morphism \begin{displaymath} F(c_1 \times \cdots, \c_n) \to F(c_1) \times \cdots \times F(c_n) \end{displaymath} is a [[homotopy equivalence]] of [[Kan complexes]]. We now look at model category structure on \emph{strictly} product preserving functors $C \to sSet$, which gives an equivalent model for $Alg_{(\infty,1)}(C)$. See [[model structure on homotopy T-algebras]]. \begin{prop} \label{ModelStructureOnSimplicialAlgebrasOverOrdinaryLawveretheory}\hypertarget{ModelStructureOnSimplicialAlgebrasOverOrdinaryLawveretheory}{} Let $T$ be the [[syntactic category]] of a [[Lawvere theory]], and let $T Alg^{\Delta^{op}} \subset Func(T,sSet)$ be the [[full subcategory]] of the [[functor category]] from $T$ to [[sSet]] on those functors that preserve these [[finite products]]. Then $T Alg^{\Delta^{op}}$ carries the structure of a [[model category]] $(T Alg^{\Delta^{op}})_{proj}$ where the weak equivalences and the fibrations are those maps underlying which are weak equivalences or fibrations, respectively, in the [[classical model structure on simplicial sets]]. \end{prop} This is due to (\hyperlink{Quillen67}{Quillen 67, II.4 theorem 4}). The inclusion $i : sAlg(C) \hookrightarrow sPSh(C^{op})_{proj}$ into the projective [[model structure on simplicial presheaves]] evidently preserves fibrations and acyclic fibrations and gives a [[Quillen adjunction]] \begin{displaymath} sAlg(C)_{proj} \stackrel{\leftarrow}{\underset{i}{\hookrightarrow}} sPSh(C^{op}) \,. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} The total right [[derived functor]] \begin{displaymath} \mathbb{R}i \;\colon\; Ho(sAlg(C)_{proj}) \to Ho(sPSh(C^{op})_{proj}) \end{displaymath} is a [[full and faithful functor]] and an object $F \in sPSh(C^{op})$ belongs to the [[essential image]] of $\mathbb{R}i$ precisely if it preserves products up to [[weak homotopy equivalence]]. \end{prop} This is due to (\hyperlink{Badzioch02}{Badzioch 02, def. 5.2, prop. 5.4, cor. 5.7}). It follows that the natural $(\infty,1)$-functor \begin{displaymath} (sAlg(C)_{proj})^\circ \stackrel{}{\longrightarrow} PSh_{(\infty,1)}(C^{op}) \end{displaymath} is an [[equivalence of quasi-categories|equivalence]]. \hypertarget{ForAlgebrasOverSimplicialLawvereTheories}{}\subsubsection*{{For algebras over simplicial Lawvere theories}}\label{ForAlgebrasOverSimplicialLawvereTheories} \begin{defn} \label{SimplicialLawvereTheory}\hypertarget{SimplicialLawvereTheory}{} Let $\Gamma = (Skel(FinSet^{\ast/}))$ be [[Segal's category]], the [[opposite category]] of a [[skeleton]] of [[finite set|finite]] [[pointed sets]]. A \emph{[[simplicial Lawvere theory]]} is a a pointed [[simplicial category]] $T$ equipped with a [[functor]] $i \;\colon\;\Gamma \to T$ such that \begin{enumerate}% \item $T$ has the same [[set]] of [[objects]] as $\Gamma$; \item $i$ is the identity on objects \item $i$ preserves [[finite products]] \end{enumerate} Given a simplicial theory $T$, then a \emph{simplicial $T$-algebra} is a product preserving [[simplicial functor]] $X$ to the [[simplicial category]] of [[pointed simplicial sets]]. The simplicial set \begin{displaymath} X(1_+) \in sSet \end{displaymath} (the value on the pointed 2-element set) is called the \emph{underlying simplicial set} of the $T$-algebra. A [[homomorphism]] of $T$-algebras is a simplicial [[natural transformation]] between such functors. Write \begin{displaymath} T Alg \in sSet Cat \end{displaymath} for the resulting [[simplicial category]]. A homomorphism is called a \emph{weak equivalence} or a \emph{fibration} if on underlying simplicial sets it is a weak equivalence or fibration, respectively, in the [[classical model structure on simplicial sets]]. Write \begin{displaymath} (T Alg)_{proj} \end{displaymath} for the category equipped with these [[classes]] of morphisms. \end{defn} (\hyperlink{Schwede01}{Schwede 01, def. 2.1 and def. 2.2 and beginning of section 3}) \begin{remark} \label{}\hypertarget{}{} In the case that the [[simplicial Lawvere theory]] $T$ happens to be simplicially discrete, i.e. an ordinary [[category]], then the category $(T Alg)_{proj}$ of simplicial $T$-algebras from def. \ref{SimplicialLawvereTheory} with that from prop. \ref{ModelStructureOnSimplicialAlgebrasOverOrdinaryLawveretheory}. \end{remark} \begin{prop} \label{}\hypertarget{}{} For $T$ a [[simplicial Lawvere theory]] (def. \ref{SimplicialLawvereTheory}) the category $(T Alg)_{poj}$ from def. \ref{SimplicialLawvereTheory} is a [[simplicial model category]]. \end{prop} This is due to (\hyperlink{Reedy74}{Reedy 74, theorem I}), reviewed in (\hyperlink{Schwede01}{Schwede 01}). The analogous statement with the [[classical model structure on simplicial sets]] replaced by the [[classical model structure on topological spaces]] is due to (\hyperlink{SchwänzlVogt91}{Schw\"a{}nzl-Vogt 91}9 A comprehensive statement of these facts is in [[Higher Topos Theory|HTT, section 5.5.9]]. \hypertarget{OtherCases}{}\subsubsection*{{Other cases}}\label{OtherCases} \begin{prop} \label{QuillenCriterion}\hypertarget{QuillenCriterion}{} Let $\mathcal{C}$ be a [[category]] with [[enough projectives]]. Say that a morphism $f$ in the category $\mathcal{C}^{\Delta^{\mathrm{op}}}$ of [[simplicial objects]] in $\mathcal{C}$ is a \emph{weak equivalence} or \emph{fibration} if for every [[projective object]] $P \in \mathcal{C}$ then $Hom(P,f)$ is a weak equivalence or fibration, respectively, in the [[classical model structure on simplicial sets]] (i.e. a [[Kan fibration]] or [[weak homotopy equivalence]], respectively). If now at least one of the following conditions is satisfied, \begin{itemize}% \item every object of $\mathcal{C}^{\Delta^{op}}$ is fibrant; \item $\mathcal{C}$ is closed under [[colimits]] and has a [[small set]] of [[projective object|projective]] [[generators]]; \end{itemize} then this makes $\mathcal{C}^{\Delta^{op}}$ a [[simplicial model category]]. \end{prop} (\hyperlink{Quillen67}{Quillen 67, II.4, theorem 4}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_homotopy_algebras}{}\subsubsection*{{Relation to homotopy $T$-algebras}}\label{relation_to_homotopy_algebras} \begin{theorem} \label{}\hypertarget{}{} There is a [[Quillen equivalence]] between the model structure on simplicial $T$-algebras and the model structure for [[homotopy T-algebra]]s. (See there). \end{theorem} This is (\hyperlink{Badzioch02}{Badzioch 02, theorem 1.3}). \hypertarget{homotopy_groups}{}\subsubsection*{{Homotopy groups}}\label{homotopy_groups} Let $T$ be an \emph{abelian Lawvere theory}, a theory that contains the theory of [[abelian group]], $Ab \to T$. Then every simplicial $T$-algebra has an underlying abelian [[simplicial group]] and is necessarily a [[Kan complex]]. \begin{prop} \label{}\hypertarget{}{} The [[homotopy group]]s $\pi_*$ of a simplicial abelian $T$-agebra form an $\mathbb{N}$-graded $T$-algebra $\pi_*(A)$ \end{prop} \begin{prop} \label{}\hypertarget{}{} The inclusion of the full [[subcategory]] $i : T Alg \hookrightarrow T Alg^{\Delta^{op}}$ of ordinary $T$-algebra as the simplicially constant ones constitutes a [[Quillen adjunction]] \begin{displaymath} (\pi_0 \dashv i) : T Alg \stackrel{\overset{\pi_0}{\leftarrow}}{\underset{i}{\hookrightarrow}} T Alg^{\Delta^{op}} \end{displaymath} from the [[trivial model structure]] on $T Alg$. The [[derived functor]] $\mathbb{R} i : T Alg \to Ho(T Alg^{\Delta^{op}})$ is a [[full and faithful functor]]. \end{prop} This allows us to think of ordinary $T$-algebras a sitting inside $\infty$-$T$-algebras. \begin{quote}% all this is certainly true for ordinary $k$-algebras. Need to spell out general proof. \end{quote} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{simplicial_associative_algebras}{}\subsubsection*{{Simplicial associative $k$-algebras}}\label{simplicial_associative_algebras} A [[simplicial ring]]s is a simplicial $T$-algebras for $T$ the Lawvere theory of rings. Let $k$ be an ordinary commutative ring and $T$ the theory of commutative [[associative algebras]] over $k$. We write $T Alg$ as $sCAlg_k$ or $CAlg_k^{op}$. Such simplicial $k$-algebras are discussed for instance in (\hyperlink{ToenVezzosi}{To\"e{}n-Vezzosi, section 2.2.1}). According to (\hyperlink{Schwede97}{Schwede 97}, Lemma 3.1.3), this model structure is [[proper model category|proper]]. \hypertarget{simplicial_commutative_algebras}{}\subsubsection*{{Simplicial commutative $k$-algebras}}\label{simplicial_commutative_algebras} The following is a variant of the model structure on simplicial commutative algebras that is implied by the above general theorem. \begin{prop} \label{}\hypertarget{}{} \textbf{(second model structure)} Let $T$ be the [[Lawvere theory]] for ([[associative algebra|associative]] and) [[commutative algebras]] over a [[ring]] $k$. Then $(cAlg_k)^{\Delta^{op}}$ becomes a [[simplicial model category]] with \begin{itemize}% \item weak equivalences the morphisms whose underlying morphism of simplicial sets are weak equivalences in the [[classical model structure on simplicial sets]]; \item fibrations the morphisms $X \to Y$ such that $X \to \pi_0 X \times_{\pi_0 Y} Y$ is a degreewise surjection. \end{itemize} \end{prop} This appears as (\hyperlink{GoerssSchemmerhorn}{Goerss-Schemmerhorn, theorem 4.17}). \hypertarget{simplicial_lie_algebras}{}\subsubsection*{{Simplicial Lie algebras}}\label{simplicial_lie_algebras} See at \emph{[[model structure on simplicial Lie algebras]]}. \hypertarget{SimplicialCommutativeHopfAlgebras}{}\subsubsection*{{Simplicial complete Hopf algebras}}\label{SimplicialCommutativeHopfAlgebras} Complete rational [[Hopf algebras]] are not the models of a [[Lawvere theory]], even though in some sense they are close (\hyperlink{Quillen67}{Quillen 67, bottom of p. 265 (61 of 92)}). But they do satisfy the assumptions of proposition \ref{QuillenCriterion} (\hyperlink{Quillen69}{Quillen 69, appendix B, prop. 2.24}). Hence simplicial rational complete Hopf algebras form a [[simplicial model category]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[model structure on cosimplicial algebras]] \item [[model structure on monoids]] \item [[algebra over a monad]] [[∞-algebra over an (∞,1)-monad]] \begin{itemize}% \item [[model structure on algebras over a monad]] \end{itemize} \item [[algebra over an algebraic theory]] [[∞-algebra over an (∞,1)-algebraic theory]] \begin{itemize}% \item [[homotopy T-algebra]] / \textbf{model structure on simplicial T-algebras} \end{itemize} \item [[algebra over an operad]] [[∞-algebra over an (∞,1)-operad]] \begin{itemize}% \item [[model structure on algebras over an operad]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The classical reference for the [[transferred model structure]] on simplicial $T$-algebras is \begin{itemize}% \item [[Dan Quillen]], \emph{Homotopical Algebra}, Lectures Notes in Mathematics 43, Springer Verlag, Berlin, (1967) \end{itemize} with some extra remarks in \begin{itemize}% \item [[Dan Quillen]], \emph{Rational homotopy theory}, The Annals of Mathematics, Second Series, Vol. 90, No. 2 (Sep., 1969), pp. 205-295 (\href{http://www.jstor.org/stable/1970725}{JSTOR}, \href{http://www.math.northwestern.edu/~konter/gtrs/rational.pdf}{pdf}) \end{itemize} The generalization to the case that the theory $T$ itself is allowed to be simplicial is due to \begin{itemize}% \item [[Christopher Reedy]], \emph{Homology of algebraic theories}, Ph.D. Thesis, University of California, San Diego, 1974 \end{itemize} and the topological version is due to \begin{itemize}% \item [[Roland Schwänzl]], [[Rainer Vogt]], \emph{The categories of $A_\infty$- and $E_\infty$-monoids and ring spaces as closed simplicial and topological model categories}, Archives of Mathematics 56 (1991) 405-411 \end{itemize} More is in \begin{itemize}% \item [[Stefan Schwede]], \emph{Stable homotopy of algebraic theories}, Topology 40 (2001) 1-41 (\href{http://www.math.uni-bonn.de/people/schwede/stable.pdf}{pdf}) \end{itemize} In \begin{itemize}% \item [[Charles Rezk]], \emph{Every homotopy theory of simplicial algebras admits a proper model} (\href{http://arxiv.org/abs/math/0003065}{math/0003065}) , \end{itemize} it is discussed that every model category of simplicial $T$-algebras is [[Quillen equivalence|Quillen equivalent]] to a left [[proper model category]]. The fact that the model structure on simplicial $T$-algebras serves to model $\infty$-algebras is in \begin{itemize}% \item [[Bernard Badzioch]], \emph{Algebraic theories in homotopy theory}, Annals of Mathematics, 155 (2002), 895-913 (\href{http://www.jstor.org/stable/3062135}{JSTOR}) \end{itemize} and the multi-sorted version is in \begin{itemize}% \item [[Julie Bergner]], \emph{Rigidification of algebras over multi-sorted theories}, Algebraic and Geometric Topoogy 7 (2007) (\href{https://arxiv.org/abs/math/0508152}{arXiv:0508152}) \end{itemize} The simplicial model structure on ordinary simplicial algebras (i.e. simplicial [[associative algebras]]) is discussed in \begin{itemize}% \item [[Paul Goerss]], [[Kirsten Schemmerhorn]], \emph{Model categories and simplicial methods} (\href{http://www.math.northwestern.edu/~pgoerss/papers/ucnotes.pdf}{pdf}) \item [[Stefan Schwede]], \emph{Spectra in model categories and applications to the algebraic cotangent complex}, Journal of Pure and Applied Algebra 120 (1997), pp. 77-104, \href{http://www.math.uni-bonn.de/people/schwede/modelspec.pdf}{pdf}. \end{itemize} Discussion of simplicial commutative associative algbras over a ring in the context of [[derived geometry]] is in \begin{itemize}% \item [[Bertrand Toën]], [[Gabriele Vezzosi]], \emph{Homotopical Algebraic Geometry II: geometric stacks and applications} (\href{http://arxiv.org/abs/math/0404373}{arXiv}) \end{itemize} Discussion of divided [[power operations]] on simplicial algebras is in \begin{itemize}% \item [[Benoit Fresse]], \emph{On the homotopy of simplicial algebras over an operad}, Transactions of the AMS, volume 352, number 9 (\href{http://www.jstor.org/stable/118177}{jstor}) \end{itemize} [[!redirects model structure on simplicial T-algebras]] [[!redirects simplicial T-algebra]] [[!redirects simplicial algebra]] [[!redirects simplicial algebras]] [[!redirects model structure on simplicial abelian groups]] \end{document}