\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model structure on simplicial sets} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{classical_model_structure}{Classical Model Structure}\dotfill \pageref*{classical_model_structure} \linebreak \noindent\hyperlink{characterisations_of_weak_homotopy_equivalences}{Characterisations of weak homotopy equivalences}\dotfill \pageref*{characterisations_of_weak_homotopy_equivalences} \linebreak \noindent\hyperlink{relation_to_the_model_structure_on_strict_groupoids}{Relation to the model structure on strict $\infty$-groupoids}\dotfill \pageref*{relation_to_the_model_structure_on_strict_groupoids} \linebreak \noindent\hyperlink{constructive_version}{Constructive version}\dotfill \pageref*{constructive_version} \linebreak \noindent\hyperlink{joyals_model_structure}{Joyal's Model Structure}\dotfill \pageref*{joyals_model_structure} \linebreak \noindent\hyperlink{comparison}{Comparison}\dotfill \pageref*{comparison} \linebreak \noindent\hyperlink{fibrant_replacement}{Fibrant replacement}\dotfill \pageref*{fibrant_replacement} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{properness}{Properness}\dotfill \pageref*{properness} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} [[simplicial set|Simplicial sets]] are the archetypical combinatorial ``[[model category|model]]'' for the [[(∞,1)-category]] of (compactly generated weakly Hausdorff) [[topological space]]s and equivalently that of [[∞-groupoid]]s, as well as a standard model for the [[(∞,1)-category of (∞,1)-categories]] [[(∞,1)Cat]] itself. This statement is made precise by the existence of the structure of a [[model category]] on [[sSet]], called the \textbf{[[classical model structure on simplicial sets]]} that is a [[presentable (infinity,1)-category|presentation]] for the [[(infinity,1)-category]] [[Top]], as well as the \textbf{Joyal model structure} which similarly is a presentation of the $(\infty,1)$-category $(\infty,1)Cat$. \hypertarget{classical_model_structure}{}\subsection*{{Classical Model Structure}}\label{classical_model_structure} The [[classical model structure on simplicial sets]], $sSet_{Quillen}$, has the following distinguished classes of morphisms: \begin{defn} \label{}\hypertarget{}{} \begin{itemize}% \item The \textbf{cofibrations} $C$ are simply the [[monomorphism]]s $f : X \to Y$ which are precisely the levelwise injections, i.e. the morphisms of simplicial sets such that $f_n : X_n \to Y_n$ is an injection of sets for all $n \in \mathbb{N}$. \item The \textbf{weak equivalences} $W$ are \textbf{weak homotopy equivalences}, i.e., morphisms whose [[geometric realization]] is a weak homotopy equivalence of topological spaces. \end{itemize} \end{defn} \begin{itemize}% \item The \textbf{fibrations} $F$ are the \textbf{[[Kan fibration]]s}, i.e., maps $f : X \to Y$ which have the [[right lifting property]] with respect to all [[horn]] inclusions. \begin{displaymath} \itexarray{ \Lambda^k[n] &\to& X \\ \downarrow &{}^\exists\nearrow& \downarrow^f \\ \Delta[n] &\to& Y } \,. \end{displaymath} \item A morphism $f : X \to Y$ of fibrant simplicial sets / [[Kan complex]]es is a weak equivalence precisely if it induces an [[isomorphism]] on all [[simplicial homotopy groups]]. \item All simplicial sets are cofibrant with respect to this model structure. \item The fibrant objects are precisely the [[Kan complex|Kan complexes]]. \end{itemize} \begin{prop} \label{}\hypertarget{}{} The \textbf{acyclic fibrations} (i.e. the maps that are both fibrations as well as weak equivalences) between [[Kan complex]]es are precisely the morphisms $f : X \to Y$ that have the [[right lifting property]] with respect to all inclusions $\partial \Delta[n] \hookrightarrow \Delta[n]$ of boundaries of $n$-simplices into their $n$-simplices \begin{displaymath} \itexarray{ \partial \Delta[n] &\to& X \\ \downarrow &{}^\exists\nearrow& \downarrow^f \\ \Delta[n] &\to& Y } \,. \end{displaymath} \end{prop} This appears spelled out for instance as (\hyperlink{GoerssJardine}{Goerss-Jardine, theorem 11.2}). In fact: \begin{prop} \label{}\hypertarget{}{} $sSet_{Quillen}$ is a [[cofibrantly generated model category]] with \begin{itemize}% \item generating cofibrations the [[boundary]] inclusions $\partial \Delta[n] \to \Delta[n]$; \item generating acyclic cofibrations the [[horn]] inclusions $\Lambda^i[n] \to \Delta[n]$. \end{itemize} \end{prop} \begin{theorem} \label{}\hypertarget{}{} The [[singular simplicial complex]]-functor and [[geometric realization]] \begin{displaymath} ({\vert -\vert}\dashv Sing) : Top_{Quillen} \stackrel{\overset{{\vert -\vert}}{\leftarrow}}{\underset{Sing}{\to}} sSet_{Quillen} \end{displaymath} constitutes a [[Quillen equivalence]] with the standard [[Quillen model structure on topological spaces]]. \end{theorem} For more on this see [[homotopy hypothesis]]. \hypertarget{characterisations_of_weak_homotopy_equivalences}{}\subsubsection*{{Characterisations of weak homotopy equivalences}}\label{characterisations_of_weak_homotopy_equivalences} \begin{theorem} \label{}\hypertarget{}{} Let $W$ be the smallest class of morphisms in $sSet$ satisfying the following conditions: \begin{enumerate}% \item The class of monomorphisms that are in $W$ is closed under [[pushout]], [[transfinite composition]], and [[retracts]]. \item $W$ has the [[two-out-of-three]] property in $sSet$ and contains all the [[isomorphisms]]. \item For all natural numbers $n$, the unique morphism $\Delta [n] \to \Delta [0]$ is in $W$. \end{enumerate} Then $W$ is the class of weak homotopy equivalences. \end{theorem} \begin{proof} \begin{itemize}% \item First, notice that the horn inclusions $\Lambda^0 [1] \hookrightarrow \Delta [1]$ and $\Lambda^1 [1] \hookrightarrow \Delta [1]$ are in $W$. \item Suppose that the horn inclusion $\Lambda^k [m] \hookrightarrow \Delta [m]$ is in $W$ for all $m \lt n$ and all $0 \le k \le m$. Then for $0 \le l \le n$, the horn inclusion $\Lambda^l [n] \hookrightarrow \Delta [n]$ is also in $W$. \item Quillen's [[small object argument]] then implies all the trivial cofibrations are in $W$. \item If $p : X \to Y$ is a trivial Kan fibration, then its right lifting property implies there is a morphism $s : Y \to X$ such that $p \circ s = id_Y$, and the two-out-of-three property implies $s : Y \to X$ is a trivial cofibration. Thus every trivial Kan fibration is also in $W$. \item Every weak homotopy equivalence factors as $p \circ i$ where $p$ is a trivial Kan fibration and $i$ is a trivial cofibration, so every weak homotopy equivalence is indeed in $W$. \item Finally, noting that the class of weak homotopy equivalences satisfies the conditions in the theorem, we deduce that it is the \emph{smallest} such class. \end{itemize} \end{proof} As a corollary, we deduce that the classical model structure on $sSet$ is the smallest (in terms of weak equivalences) model structure for which the cofibrations are the monomorphisms and the weak equivalences include the (combinatorial) homotopy equivalences. \begin{prop} \label{}\hypertarget{}{} Let $\pi_0 : sSet \to Set$ be the connected components functor, i.e. the left adjoint of the constant functor $cst : Set \to sSet$. A morphism $f : Z \to W$ in $sSet$ is a weak homotopy equivalence if and only if the induced map \begin{displaymath} \pi_0 K^f : \pi_0 K^W \to \pi_0 K^Z \end{displaymath} is a bijection for all \emph{Kan complexes} $K$. \end{prop} \begin{proof} One direction is easy: if $K$ is a Kan complex, then axiom SM7 for [[simplicial model categories]] implies the functor $K^{(-)} : sSet^{op} \to sSet$ is a right [[Quillen functor]], so Ken Brown's lemma implies it preserves all weak homotopy equivalences; in particular, $\pi_0 K^{(-)} : sSet^{op} \to Set$ sends weak homotopy equivalences to bijections. Conversely, when $K$ is a Kan complex, there is a natural bijection between $\pi_0 K^X$ and the hom-set $Ho (sSet) (X, K)$, and thus by the [[Yoneda lemma]], a morphism $f : Z \to W$ such that the induced morphism $\pi_0 K^W \to \pi_0 K^Z$ is a bijection for all Kan complexes $K$ is precisely a morphism that becomes an isomorphism in $Ho (sSet)$, i.e. a weak homotopy equivalence. \end{proof} \hypertarget{relation_to_the_model_structure_on_strict_groupoids}{}\subsubsection*{{Relation to the model structure on strict $\infty$-groupoids}}\label{relation_to_the_model_structure_on_strict_groupoids} \begin{quote}% under construction \end{quote} Recall the [[model structure on strict omega-groupoids]] and the [[omega-nerve]] operation \begin{displaymath} N : Str \infty Grpd \to Kan Complx \,. \end{displaymath} \begin{quote}% this ought to be a Quillen functor, but is it? \end{quote} As a warmup, let $C, D$ be ordinary [[groupoid]]s and $N(C)$, $N(D)$ their ordinary [[nerve]]s. We'd like to show in detail that \begin{prop} \label{}\hypertarget{}{} A [[functor]] $F : C \to D$ is \begin{itemize}% \item [[k-surjective functor|k-surjective]] for all $k$ and hence a surjective [[equivalence of categories]] precisely if under the [[nerve]] $N(F) : N(C) \to N(D)$ it induces an acyclic fibration of Kan complexes; \end{itemize} \end{prop} \begin{proof} We know that both $N(C)$ and $N(D)$ are Kan complexes. By the above theorem it suffices to show that $N(f)$ being a surjective equivalence is the same as having all lifts \begin{displaymath} \itexarray{ \partial \Delta[n] &\to& N(C) \\ \downarrow &{}^\exists\nearrow& \downarrow^{N(F)} \\ \Delta[n] &\to& N(D) } \,. \end{displaymath} We check successively what this means for increasing $n$: \begin{itemize}% \item $n= 0$. In degree 0 the boundary inclusion is that of the empty set into the [[point]] $\emptyset \hookrightarrow {*}$. The lifting property in this case amounts to saying that every point in $N(D)$ lifts through $N(F)$. \begin{displaymath} \itexarray{ \emptyset &\to& N(C) \\ \downarrow &{}^\exists\nearrow& \downarrow^{N(F)} \\ {*} &\to& N(D) } \Leftrightarrow \itexarray{ && N(C) \\ &{}^\exists\nearrow& \downarrow^{N(F)} \\ {*} &\to& N(D) } \,. \end{displaymath} This precisely says that $N(F)$ is surjective on 0-cells and hence that $F$ is surjective on objects. \item $n=1$. In degree 1 the boundary inclusion is that of a pair of points as the endpoints of the interval $\{\circ, \bullet\} \hookrightarrow \{\circ \to \bullet\}$. The lifting property here evidently is equivalent to saying that for all objects $a,b \in Obj(C)$ all elements in $Hom(F(a),F(b))$ are hit. Hence that $F$ is a [[full functor]]. \item $n=2$. In degree 2 the boundary inclusion is that of the triangle as the boundary of a filled triangle. It is sufficient to restrict attention to the case that the map $\partial \Delta[2] \to N(C)$ sends the top left edge of the triangle to an identity. Then the lifting property here evidently is equivalent to saying that for all objects $a,b \in Obj(C)$ the map $F_{a,b} : Hom(a,b) \to Hom(F(a),F(b))$ is injective. Hence that $F$ is a [[faithful functor]]. \begin{displaymath} \left( \itexarray{ && b \\ & {}^{Id_a}\nearrow && \searrow^{f} \\ a &&\stackrel{g}{\to}&& b } \right) \stackrel{N(F)}{\mapsto} \left( \itexarray{ && b \\ & {}^{Id_a}\nearrow &\Downarrow^=& \searrow^{F(f)} \\ a &&\stackrel{F(g)}{\to}&& b } \right) \end{displaymath} \end{itemize} \end{proof} \hypertarget{constructive_version}{}\subsubsection*{{Constructive version}}\label{constructive_version} The original [[proofs]] of the existence of the [[classical model structure on simplicial sets]] are based in [[classical mathematics]] as they use the [[principle of excluded middle]] and the [[axiom of choice]], and are hence not valid in [[constructive mathematics]]. This becomes more than a philosophical issue with the relevance of this [[model category]]-[[structure]] in [[homotopy type theory]], where [[internalization]] into the [[type theory]] requires [[constructive mathematics|constructive]] methods for interpreting [[proofs as programs]]. A constructively valid model structure on simplicial sets and coinciding with the [[classical model structure on simplicial sets|classical model structure]] if [[excluded middle]] and [[axiom of choice]] are assumed was found in \href{constructive+model+structure+on+simplicial+sets#Henry19}{Henry 19}. Alternative simpler proofs were found in \href{constructive+model+structure+on+simplicial+sets#GambinoSattlerSzumilo19}{Gambino-Sattler-Szumiło 19}. See at \emph{[[constructive model structure on simplicial sets]]}. \hypertarget{joyals_model_structure}{}\subsection*{{Joyal's Model Structure}}\label{joyals_model_structure} There is a second model structure on $sSet$ -- the \textbf{[[model structure for quasi-categories]]} $sSet_{Joyal}$ -- which is different (not [[Quillen equivalence|Quillen equivalent]]) to the classical one, due to [[Andre Joyal]], with the following distinguished classes of morphisms: \begin{itemize}% \item The cofibrations $C$ are monomorphisms, equivalently, levelwise injections. \item The weak equivalences $W$ are \textbf{[[equivalence of quasi-categories|weak categorical equivalences]]}, which are morphisms $u : A \rightarrow B$ of simplicial sets such that the induced map $u^* : X^B \rightarrow X^A$ of internal-homs for all [[quasi-category|quasi-categories]] $X$ induces an isomorphism when applying the functor $\tau_0$ that takes a simplicial set to the set of isomorphism classes of objects of its fundamental category. \item The fibrations $F$ are called variously \textbf{isofibrations} or \textbf{[[inner Kan fibration|quasi-fibration]]}. As always, these are determined by the classes $C$ and $W$. Quasi-fibrations between weak Kan complexes have a simple description; they are precisely the [[inner Kan fibrations]], the maps that have the right lifting property with respect to the inner [[horn]] inclusions and also the inclusion $j_0 : * \rightarrow J$ where $*$ is the terminal simplicial set and $J$ is the nerve of the groupoid on two objects with one non-trivial isomorphism. \end{itemize} All objects are cofibrant. The fibrant objects are precisely the [[quasi-categories]]. This model structure is cofibrantly generated. The generating cofibrations are the set $I$ described above. There is no known explicit description for the generating trivial cofibrations. Importantly, this model structure is Quillen equivalent to several alternative model structures for the `'homotopy theory of homotopy theories`` such as that on the category of [[simplicially enriched category|simplicially enriched categories]]. \hypertarget{comparison}{}\subsubsection*{{Comparison}}\label{comparison} Every weak categorical equivalence is a weak homotopy equivalence. Since both model structures have the same cofibrations, it follows that the classical model structure is a [[Bousfield localization]] of Joyal's model structure. The Quillen model structure is the left [[Bousfield localization of model categories|Bousfield localization]] of $sSet_{Joyal}$ at the outer [[horn]] inclusions. \hypertarget{fibrant_replacement}{}\subsection*{{Fibrant replacement}}\label{fibrant_replacement} Fibrant replacement in $sSet_{Quillen}$ models the process of \emph{$\infty$-groupoidification}, of freely inverting all [[k-morphism]]s in a simplicial set. Techniques for fibrant replacements $sSet_{Quillen}$ are discussed at \begin{itemize}% \item [[Kan fibrant replacement]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[model structure on topological spaces]], [[model structure on simplicial presheaves]] \item [[model structure on semi-simplicial sets]] \end{itemize} \hypertarget{properness}{}\subsection*{{Properness}}\label{properness} The Quillen model structure is both left and right [[proper model category|proper]]. Left properness is automatic since all objects are cofibrant. Right properness follows from the following argument: it suffices to show that there is a functor $R$ which (1) preserves fibrations, (2) preserves pullbacks of fibrations, (3) preserves and reflects weak equivalences, and (4) lands in a category in which the pullback of a weak equivalence along a fibration is a weak equivalence. For if so, we can apply $R$ to the pullback of a fibration along a weak equivalence to get another such pullback in the codomain of $R$, which is a weak equivalence, and hence the original pullback was also a weak equivalence. Two such functors $R$ are \begin{itemize}% \item geometric realization $sSet \to Top$, where $Top$ denotes a sufficiently [[convenient category of topological spaces]] (e.g. the category of [[k-spaces]] suffices) and \item $Ex^\infty : sSet \to Kan$, where $Kan$ is the category of [[Kan complexes]]. \end{itemize} This can be found, for instance, in II.8.6--7 of \hyperlink{GoerssJardine}{Goerss-Jardine}. Another proof can be found in \hyperlink{Moss}{Moss}, and a different proof of properness can be found in \hyperlink{Cisinski06}{Cisinski, Prop. 2.1.5}. \hypertarget{references}{}\subsection*{{References}}\label{references} Dan Quillen's original proof in \begin{itemize}% \item [[Dan Quillen]], \emph{Homotopical Algebra}, LNM 43, Springer, (1967) \end{itemize} of the [[classical model structure on simplicial sets]] is purely combinatorial (i.e. does not use topological spaces): he uses the theory of [[minimal Kan fibrations]], the fact that the latter are fiber bundles, as well as the fact that the [[classifying space]] of a [[simplicial group]] is a [[Kan complex]]. This proof has been rewritten several times in the literature: at the end of \begin{itemize}% \item [[Israel Gelfand]], [[Yuri Manin]], \emph{Methods of Homological Algebra}, Springer, 1996 \end{itemize} as well as in \begin{itemize}% \item [[André Joyal]], [[Myles Tierney]] \emph{An introduction to simplicial homotopy theory}, 2005 (\href{http://hopf.math.purdue.edu/cgi-bin/generate?/Joyal-Tierney/JT-chap-01}{web}) \end{itemize} A proof (in fact two variants of it) using the [[Kan fibrant replacement]] $Ex^\infty$ functor is given in section 2 of \begin{itemize}% \item [[Denis-Charles Cisinski]], \emph{[[joyalscatlab:Les préfaisceaux comme type d'homotopie]]}, Ast\'e{}risque, Volume 308, Soc. Math. France (2006), 392 pages (\href{http://www.math.univ-toulouse.fr/~dcisinsk/ast.pdf}{pdf}) \end{itemize} which discusses the topic as a special case of a \emph{[[Cisinski model structure]]}. The fun part is not that much about the existence of model structure, but to prove that the fibrations are precisely the [[Kan fibrations]] (and also to prove all the good properties of $Ex^\infty$ without using topological spaces); for two different proofs of this fact using $Ex^\infty$, see Prop. 2.1.41 as well as Scholium 2.3.21 for an alternative). For the rest, everything was already in the book of Gabriel and Zisman, for instance. Another approach also using $Ex^\infty$ is in \begin{itemize}% \item Sean Moss, \emph{Another approach to the Kan-Quillen model structure}, \href{http://arxiv.org/abs/1506.04887}{arXiv}. \end{itemize} Other standard textbook references for the classical model structure are \begin{itemize}% \item [[Paul Goerss]], [[Rick Jardine]], \emph{[[Simplicial homotopy theory]]} (Birkh\"a{}user) (\href{http://www.maths.abdn.ac.uk/~bensondj/html/archive/goerss-jardine.html}{ps}). \item [[Mark Hovey]], \emph{Model categories} \end{itemize} For references on the Joyal model structure see \emph{[[model structure for quasi-categories]]}. As a [[categorical semantics]] for [[homotopy type theory]], the model structure on simplicial sets is considered in \begin{itemize}% \item [[Chris Kapulkin]], [[Peter LeFanu Lumsdaine]], [[Vladimir Voevodsky]], (\href{http://arxiv.org/abs/1203.2553}{arXiv:1203.2553}) \end{itemize} \end{document}