\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_theory}{}\paragraph*{{Model theory}}\label{model_theory} [[!include model theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Scope}{Scope}\dotfill \pageref*{Scope} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{FirstOrderLogic}{Classical Model theory in First-order logic}\dotfill \pageref*{FirstOrderLogic} \linebreak \noindent\hyperlink{definition+theory+and+model+fol}{Definition and remarks}\dotfill \pageref*{definition+theory+and+model+fol} \linebreak \noindent\hyperlink{OperadsMonadsAndLawvereTheories}{Operads, Monads and Lawvere theories}\dotfill \pageref*{OperadsMonadsAndLawvereTheories} \linebreak \noindent\hyperlink{HigherOrderLogic}{Higher-order logic}\dotfill \pageref*{HigherOrderLogic} \linebreak \noindent\hyperlink{CategoricalModelTheory}{Infinitary logic and Categorical model theory}\dotfill \pageref*{CategoricalModelTheory} \linebreak \noindent\hyperlink{important_theorems}{Important theorems}\dotfill \pageref*{important_theorems} \linebreak \noindent\hyperlink{goedel_completeness_theorem}{Goedel completeness theorem}\dotfill \pageref*{goedel_completeness_theorem} \linebreak \noindent\hyperlink{goedels_compactness_theorem}{Goedel's compactness theorem}\dotfill \pageref*{goedels_compactness_theorem} \linebreak \noindent\hyperlink{o_ultraproduct_theorem}{o ultraproduct theorem}\dotfill \pageref*{o_ultraproduct_theorem} \linebreak \noindent\hyperlink{corollaries_worth_thinking_about}{Corollaries worth thinking about}\dotfill \pageref*{corollaries_worth_thinking_about} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} On the one hand, there is [[internal language|syntax]]. On the other hand, there is [[structure|semantics]]. Model theory is (roughly) about the relations between the two: model theory studies classes of [[models]] of [[theories]], hence classes of ``[[structures in model theory|mathematical structures]]''. A model theory for a particular [[logic]] typically works within a given [[universe]], and specifies a notion of ``[[mathematical structure]]'' in this context, namely a \emph{[[structure in model theory|structure for a language]]}, and a \emph{[[definition]] of [[truth]]}. Logic is typically specified by [[signature (in logic)|language]] (function symbols, relations symbols and constants), and formulas (formed from symbols, [[variables]], Boolean operations and [[quantifiers]]). Language together with a choice of a set of formulas without [[free variables]] (viewed as [[axioms]]) is called a [[theory]]. A structure is an interpretation of a language $L$ via a given set $M$ together with interpretation of the symbols of the language. A \textbf{[[model]]} of a [[theory]] $\mathcal{T}$ in the language $L$ is an [[structure in model theory|L-structure]] which satisfies each formula in $\mathcal{T}$. The two main problems of model theory are \begin{itemize}% \item classification of a given theory $\mathcal{T}$ in a language $L$ \item study the family of all [[definable sets]] of a [[structure (in model theory)|structure]] $M$ of a [[language (in model theory)|language]] $L$ \end{itemize} In all memorable examples, the collection of structures for a language will form an interesting [[category]] (see \hyperlink{BekeRosicky11}{Beke-Rosicky 11} for a characterization of these), and the subcollection of those structures verifying a given collection $Th$ of [[propositions]] in the language are an interesting [[subcategory]] again. Model theory as currently conceived has strong analogies with the classical theory of [[algebraic varieties]] and hence with the part of [[algebraic geometry]] that deals with these. One such analogy is that [[definable subsets]] are likened to [[zero loci]] of [[equations]], and another consists of various notions of [[dimension]] which can be likened to Krull dimension. One can also say that classical algebraic geometry often provides a testing ground for more general developments in model theory. (For the most part, model theory does not deal however with more global concepts of modern algebraic geometry such as [[sheaves]] or [[schemes]].) \hypertarget{Scope}{}\subsection*{{Scope}}\label{Scope} In full generality, \emph{model theory} would study all kinds of [[models]] over all kinds of [[theories]], hence pretty much everything that is considered (in) [[mathematics]]. However, in order to find effective classification results for models, one traditionally restricts attention to very special kinds of theories only. Traditionally the default subject of model theory (e.g. (\hyperlink{Hodges93}{Hodges 93})) are [[first-order theories]] (only) and their models in [[Set]] (only), these are the traditional [[structures in model theory]]. For emphasis the study of this specific case is also called \emph{first-order model theory} or \emph{classical model theory} (\hyperlink{SEPEntry}{SEP}). Among the fundamental classfication theorems provable in this context are the [[compactness theorem]] and the [[Löwenheim-Skolem theorem]]. (See also \emph{[[geometric stability theory]]}.) More modern developments in model theory consider also wider classes of [[theories]] than just [[first-order theories]] (e.g \hyperlink{TentZiegler12}{Tent-Ziegler 12}). In particular there is \hyperlink{CategoricalModelTheory}{categorical model theory} (\hyperlink{MakkaiPare89}{Makkai-Par\'e{} 89}, \hyperlink{BekeRosicky11}{Beke-Rosicky 11}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Classical model theory is concerned with models of [[theories]] in [[first-order logic]], this is what we discuss first, below in \begin{itemize}% \item \hyperlink{FirstOrderLogic}{First-order logic}. \end{itemize} More generally one can consider models over theories in [[higher-order logic]], this we discuss below in \begin{itemize}% \item \hyperlink{HigherOrderLogic}{Higher-order logic}. \end{itemize} \hypertarget{FirstOrderLogic}{}\subsubsection*{{Classical Model theory in First-order logic}}\label{FirstOrderLogic} See also/first [[theory]]/[[first-order theory]]. \textbf{Caveat Lector.} This may duplicate/contradict other nLab accounts of [[FOL]], e.g. [[theory]]; it is present here for illustrative purposes only. We attempt to obviate the trouble of quantifier scope by using \emph{addressing} rather than \emph{naming} of variables; specifically, the variable $x_n$ occurs \emph{bound} in a formula if it is nested within more than $n$ quantifiers, and otherwise \emph{free}. We describe an [[operad]] $L$ in [[Set]] over two [[type]]s, $W$ and $P$ for ``words'' and ``propositions'', respectively. The full operad is freely generated by various disjoint suboperads \begin{itemize}% \item a free suboperad $O$ of operations, or functions, of types $W^n\to W$; \item an $\mathbb{N}$-indexed suboperad $X$ of variables of types $1\to W$; \item a (free) suboperad $R$ of predicates, or relations, of types $W^n\to P$; \item the equality operad, of type $W^2\to P$ \item the boolean operad, $B$: it's got $\wedge, \vee,\neg,\dots$ of types $P^{k}\to P$ for $k=1,2$, and perhaps $k=0$ if you want to include $\bot$; these compose the way you think they should. \item the quantifier $\forall:$, usually written $\forall x_j$, where $x_j\in X_0$; $\backslash$forall is of type $P\to P$. \end{itemize} Notable subsets of $L$ include $O[X]$, generated by $O\cup X$, the suboperad of parametrized words, and $R[X]$, the elements of types $? \to P$ in the suboperad generated by $O,R,X$. Abusively, an \emph{$L$-structure}, or \emph{interpretation} of the functions and relations is an [[algebra over an operad|algebra]] $(W,P,O,R)\mapsto (M,2,O_M,R_M)$ for the suboperad $Q$ of $L$ generated by $O\cup R$ with the type $P$ interpreted by the initial [[boolean algebra]] $2$. The \emph{Tarski Definition of Truth} is a [[functor|natural]] extension of the $Q$-algebra $M$ to an $L$-algebra, $(M,\dots)$ such that * for $\Phi$ in $R[X]$ and for all functions $m:X\to M$, the sensible thing $\Phi[m]$ is true in $M$. * $\Phi \wedge \Theta$ is true if for all functions $m:X\to M$, both $\Phi[m]$ and $\Theta[m]$ are true, and $\neg \Phi$ is true if and only if $\Phi$ is \emph{not}. * $(\forall:\Phi)[m]$ is true in $M$ precisely when $\Phi[m_a]$ is true for all $a\in M$, where \begin{displaymath} m_a(x_i) = \left\{ \itexarray{ a & i=0 \\ m(x_{i-1}) & else }\right. \end{displaymath} (Again, this really should be written more clearly, but it's a start.) [[JCMcKeown]]: is there some nicer way to say the quantifier nonsense? I'm thinking along the lines \begin{quote}% there are two actions of $\mathbb{N}$ on $L$: one shifts all the variables by 1, the other adds a $\forall$ quantifier; and the Tarski extension is the one that makes these commute somehow \end{quote} \emph{ibid}: maybe it's more right to say that $P_M$ should be the boolean algebra $\mathcal{P}(|M|^\mathbb{N})$? This again has that natural action of $\mathbb{N}$ on it\ldots{} \hypertarget{definition+theory+and+model+fol}{}\paragraph*{{Definition and remarks}}\label{definition+theory+and+model+fol} An $L$-structure $M$, as an $L$-algebra with extra properties, defines a \textbf{complete first-order theory} $Th(M)$, that subset of $L$ which $M$ interprets as $\top\in 2$, or \emph{true}. Conversely, given a collection $T$ of elements of $L$ of type $?\to P$, we say that $M\models T$, or in words $M$ \textbf{is a model of the theory} $T$ whenever $T\subset Th(M)$. There is an obvious Galois connection between theories $T$ and the collections of $L$-structures that are models. Much of deeper model theory studies the fine structure of this connection. \hypertarget{OperadsMonadsAndLawvereTheories}{}\subsubsection*{{Operads, Monads and Lawvere theories}}\label{OperadsMonadsAndLawvereTheories} Structures from [[universal algebra]], [[higher algebra]] and [[categorical logic]] that conveniently allow tospeak about [[theories]] and their [[models]] are [[operads]], [[monads]] and [[Lawvere theories]]. Each of these may be understood as characterizing a [[theory]]. Its [[models]] then are the corresponging algebras, see at \emph{[[algebra over an operad]]}, \emph{[[algebra over a monad]]} and \emph{[[algebra over a Lawvere theory]]}, respectively. \hypertarget{HigherOrderLogic}{}\subsubsection*{{Higher-order logic}}\label{HigherOrderLogic} Remaining within [[Set]], we can also generalize beyond first-order logic to various [[higher-order logic|higher-order logics]]. ((insert your favourite variant here)) \hypertarget{CategoricalModelTheory}{}\subsubsection*{{Infinitary logic and Categorical model theory}}\label{CategoricalModelTheory} For a reasonable fragment of [[infinitary logic]], then the [[category]] of all [[models]] over [[theories]] in this [[language]] is an [[accessible category]] and moreover all accessible categories arise this way. (\hyperlink{MakkaiPare89}{Makkai-Pare 89}, \hyperlink{BekeRosicky11}{Beke-Rosicky 11}). \hypertarget{important_theorems}{}\subsection*{{Important theorems}}\label{important_theorems} The following are closely interrelated, and depend on having a suitable universe $V$. We can view them as theorems of $ZFC$ or as (relatively mild) conditions on $V$. \emph{(\ldots{} clarify \ldots{})} \hypertarget{goedel_completeness_theorem}{}\paragraph*{{Goedel completeness theorem}}\label{goedel_completeness_theorem} Given a first-order theory $T$ in some language $L$, $T$ is consistent iff there is a model of $T$ in $V$ --- that is, iff $M\models T$ for some $M\in V$. See at \emph{[[completeness theorem]]}. \hypertarget{goedels_compactness_theorem}{}\paragraph*{{Goedel's compactness theorem}}\label{goedels_compactness_theorem} Under the same hypotheses, $T$ is consistent iff every finite subset of $T$ is consistent; expressed semantically, a theory $T$ has a model iff every finite subset of $T$ has a model. See at \emph{[[compactness theorem]]}. \hypertarget{o_ultraproduct_theorem}{}\paragraph*{{o ultraproduct theorem}}\label{o_ultraproduct_theorem} \emph{(\ldots{}think of a good way to state this\ldots{})} \hypertarget{corollaries_worth_thinking_about}{}\paragraph*{{Corollaries worth thinking about}}\label{corollaries_worth_thinking_about} It follows that first-order theories are quite permissive; or in other words that they're inefficient at pinning down particular structures. For example, consider the complete first-order theory $Th(V_\omega,\in)$, and any total order $(X,\lt)$. If one \emph{expands} the language (coresponding to an injective morphism of operads) to include constant symbols $c_x$ for $x\in X$, then for any subset $s$ of $X$ of finite size $n + 1$, one has \begin{displaymath} (V_\omega,\in,0,1,\cdots,n)\models Th(V_\omega,\in)\cup \{c_x\in c_y \mid x\lt y;x,y\in s\} \end{displaymath} so that the \emph{finite extensions} of $Th(V_\omega,\in)$ by suborders of $X$ are all consistent; by compactness, the fully extended theory $Th(V_\omega,\in)\cup \{c_x\in c_y \mid x\lt y;x,y\in X\}$ is also consistent; thus by completeness there is a structure $(M,\epsilon,\cdots,c_x,\cdots)$ such that * $(M,\epsilon)\models Th(V_\omega,\in)$ * $c_x\epsilon c_y$ for all $x\lt y$ in $X$ By a similar argument, (if ZFC is consistent) there are models $M'$ of classical set theory satisfying the (higher-order) property that the natural numbers object $\omega_{M'}$ of $M'$ includes your favourite total order $(X,\lt)$ \emph{as a suborder} --- of course, $M'$ isn't allowed to \emph{know} this --- notably, there is \textbf{no object} $\xi$ in $M$ such that $\{y\mid y\epsilon \xi\} = \{c_x \mid x\in X\}$. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[model theory - contents]] \item [[definable set]], [[definable groupoid]] \item [[type (in model theory)]] \item [[stability in model theory]], [[geometric stability theory]] \item [[categoricity]] \item [[abstract model theory]] \item [[generalized quantifier]] \item [[nonstandard analysis]], [[set theory]], [[foundations and logic]], [[algebraic set theory]], [[forcing]], [[o-minimal structure]] \item [[Lascar group]] \item [[Birkhoff's HSP theorem]] \item [[model theory and physics]] \item entries on researchers in model theory: [[Alfred Tarski]], [[Boris Zilber]], [[Kenneth Kunen]], [[Saharon Shelah]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} Discussion of classical first-order model theory includes \begin{itemize}% \item Stanford Encyclopedia of Philosophy, \emph{\href{http://plato.stanford.edu/entries/modeltheory-fo/}{First-order Model Theory}} \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Model_theory}{Model theory}} \item [[Wilfrid Hodges]], \emph{Model Theory}, Cambridge University Press 1993; \emph{A shorter model theory}, Cambridge UP 1997 \end{itemize} Other basic texts on model theory include \begin{itemize}% \item Katrin Tent, [[Martin Ziegler]], \emph{A course in model theory}, Lecture Notes in Logic, Cambridge University Press, April 2012 \item Chen Chung Chang, H. Jerome Keisler, \emph{Model Theory. Studies in Logic and the Foundations of Mathematics}. 1973, 1990, Elsevier. \item David Marker, \emph{Model Theory: An Introduction} Graduate Texts in Mathematics \textbf{217} (2002) \item C U Jensen, H Lenzing, \emph{Model theoretic algebra: with particular emphasis on fields, rings, modules} (1989) \item \href{http://shelah.logic.at}{Shelah archive}, \href{http://shelah.logic.at/books.html}{Shelah's books} \item Gerald E Sacks, \emph{Saturated model theory}, Benjamin 1972 \end{itemize} Specific discussion of generalization of classical first-order model theory to more general kinds of [[logic]] include\ldots{} \ldots{}to [[modal logic]]: \begin{itemize}% \item Valentin Goranko, Martin Otto, \emph{Model theory of modal logic}, \href{http://www.mathematik.tu-darmstadt.de/~otto/papers/mlhb.pdf}{pdf} \end{itemize} \ldots{}to [[infinitary logic]]: \begin{itemize}% \item H. Keisler. \emph{Model theory for infinitary logic}, North-Holland, Amsterdam, 1971. \end{itemize} Discussion of aspects of [[category theory]] and [[categorical logic]] ([[accessible categories]]) in model theory includes \begin{itemize}% \item [[Michael Makkai]], [[Robert Paré]], \emph{Accessible categories: the foundations of categorical model theory}, Contemporary mathematics vol 104, AMS 1989 \item [[Tibor Beke]], [[Ji?í Rosický]], \emph{Abstract elementary classes and accessible categories}, 2011 (\href{http://www.math.muni.cz/~rosicky/papers/elem7.pdf}{pdf}) \item B.Hart et. al (eds.), \emph{Models, Logics, and Higher-dimensional Categories, A Tribute to the Work of Mihali Makkai}, AMS (2011) \end{itemize} Discussion of [[geometric stability theory]] includes \begin{itemize}% \item Anand Pillay, \emph{Geometric stability theory} \item [[Boris Zilber]], \emph{Elements of geometric stability theory}, lecture notes, \href{http://people.maths.ox.ac.uk/zilber/est.pdf}{pdf}; \emph{On model theory, non-commutative geometry and physics}, (survey draft) \href{http://people.maths.ox.ac.uk/zilber/bul-survey.pdf}{pdf}; \emph{Zariski geometries}, book, \href{http://people.maths.ox.ac.uk/zilber/s.pdf}{draft pdf}; On model theory, noncommutative geometry and physics, conference talk, \href{http://zomobo.net/play.php?id=wnhbpIQBpiE}{video} \item John T. Baldwin, \emph{Fundamentals of stability theory} \end{itemize} Discussion of [[motivic integration]] includes \begin{itemize}% \item [[David Kazhdan]], \emph{Lecture notes in motivic integration}, with intro to logic and model theory, \href{http://www.ma.huji.ac.il/~kazhdan/Notes/motivic/b.pdf}{pdf} \item R. Cluckers, J. Nicaise, J. Sebag (Editors), \emph{Motivic Integration and its Interactions with Model Theory and Non-Archimedean Geometry}, 2 vols. London Mathematical Society Lecture Note Series \textbf{383}, \textbf{384} \end{itemize} \end{document}