\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{model-theoretic Galois theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_theory}{}\paragraph*{{Model theory}}\label{model_theory} [[!include model theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_case_of_finite_extensions}{The case of finite extensions}\dotfill \pageref*{the_case_of_finite_extensions} \linebreak \noindent\hyperlink{the_case_for_infinite_extensions}{The case for infinite extensions}\dotfill \pageref*{the_case_for_infinite_extensions} \linebreak \noindent\hyperlink{the_modeltheoretic_absolute_galois_group}{The model-theoretic absolute Galois group}\dotfill \pageref*{the_modeltheoretic_absolute_galois_group} \linebreak \noindent\hyperlink{the_fundamental_theorem_of_modeltheoretic_galois_theory}{The fundamental theorem of model-theoretic Galois theory}\dotfill \pageref*{the_fundamental_theorem_of_modeltheoretic_galois_theory} \linebreak \noindent\hyperlink{model_theory_and_the_tannakian_formalism}{Model theory and the Tannakian formalism}\dotfill \pageref*{model_theory_and_the_tannakian_formalism} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{discussion}{Discussion}\dotfill \pageref*{discussion} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Classical [[Galois theory]] is about the classification of intermediate field extensions in a (field-theoretic) [[algebraic closure]] of a ground field according to the structure of a [[profinite group|profinite automorphism group]]. This can be adapted to the setting of a [[monster model|universal domain]] of any [[first-order theory]] which [[elimination of imaginaries|eliminates imaginaries]]: we can analogously classify [[definable closure|definably closed]] subsets of a [[definable closure|model-theoretic algebraic closure]] of some parameter set according to the structure of a profinite automorphism group. In the language of [[Grothendieck's Galois theory]], we can sketch the next two sections as: the category of finite $A$-definable sets in a [[monster model]] $\mathbb{M}$ equipped with the forgetful functor to [[Set]] is a [[Galois category]]. \hypertarget{the_case_of_finite_extensions}{}\subsection*{{The case of finite extensions}}\label{the_case_of_finite_extensions} It will be instructive to look at the case of finite extensions first, as the case of infinite extensions will be a version of the same argument but souped-up with formalities about profinite groups. Recall the fundamental theorem of Galois theory for finite extensions of fields: \textbf{Theorem.} For $L/K$ a finite, [[separable field extension|separable]], [[normal field extension]], there is an order-reversing bijective correspondence \begin{displaymath} \operatorname{Sub}_{\mathbf{Grp}} \left( \operatorname{Aut}(L/K)\right) \leftrightarrows \operatorname{Int} \left(L/K\right) \end{displaymath} between the subgroups of the group of field automorphisms of $L$ fixing $K$ pointwise, and the intermediate field extensions between $K$ and $L$. The correspondence is given by sending a subgroup to its field of fixed points, and an intermediate extension to its stabilizer subgroup. This can be translated to general model-theoretic language as follows: we work in a monster model $\mathbb{M} \models T$ for a complete first-order theory which [[elimination of imaginaries|eliminates imaginaries]]. Let $A$ be a small parameter set in $M$. We have the following \textbf{Dictionary}, between our general $T$ eliminating imaginaries and the special case $T = [[ACF]]$ the theory of an algebraically closed field. \begin{itemize}% \item $A \supseteq K$ corresponds to ``$A$ is an extension of $K$''. \item If $A$ is an extension of $K$, the [[definable closure]] of $A$ corresponds to the [[perfect field|perfect hull]] of the field $K(A)$ generated by adjoining $A$. \item If $A$ is an extension of $K$, the [[algebraic closure]] of $A$ corresponds to the separable closure of the field $K(A)$ generated by adjoining $A$. \item If $A$ is a definably closed extension of $K$ with $A = \operatorname{dcl}(\gamma \cup K)$ for $\gamma$ finite, this corresponds to $K(A)$ being finitely-generated. \item The [[orbit]] of an element $\ell \in \mathbb{M}$ under $\Aut(\mathbb{M}/K)$ corresponds to conjugates of $\ell$ in $K(\ell)$ under $\operatorname{Aut}(K(\ell)/K)$. \item The size of this orbit corresponds to the degree of the field extensions $K(\ell)/K$. \item If this orbit is finite, $\ell$ is said to be \emph{algebraic} over $K$. \item The condition ``$\forall \ell \in L \supseteq K$, $\operatorname{Orb}_{\operatorname{Aut}(\mathbb{M}/L)}(\ell) \subseteq L$'' corresponds to ``$L$ is a normal extension of $K$''. \end{itemize} When $L$ is a normal extension of $K$, $L$ splits into $\operatorname{Aut}(\mathbb{M}/K)$-orbits, and so the latter group acts via restriction on $L/K$. We call the image of the induced group homomorphism $\operatorname{Aut}(\mathbb{M}/K) \to \Sym(L/K)$ $\operatorname{Aut}(L/K)$. With this in place, we can show: \textbf{Theorem.} Let $K$ be a definably closed parameter set. Let $A$ be a normal extension of $K$ generated by the finite algebraic tuple $\gamma$. Then there is an order-reversing bijective correspondence between the subgroups of $\operatorname{Aut}(A/K)$ and the definably closed intermediate extensions of $A/K$. The correspondence is given by maps $\mathsf{Fix}$ sending a subgroup to its fixed points and $\mathsf{Stab}$ sending an intermediate definably closed extension to its stabilizer subgroup. \emph{Proof.} By saturation, $\mathsf{Fix}$ is well-defined, and $\mathsf{Stab}$ is clearly well-defined. $\mathsf{Fix}$ is left-[[inverse]] to $\mathsf{Stab}$: by saturation in the [[monster model|monster]], any fixed points of $\mathsf{Stab}(B)$ for $K \subseteq B \subseteq A$ must be in the definable closure of $B$, so whenever $B$ is definably closed, $\mathsf{Fix} \left( \mathsf{Stab} (B) \right) \subseteq B$, with the reverse inclusion immediate. $\mathsf{Stab}$ is left-inverse to $\mathsf{Fix}$: for $H$ a subgroup of $\operatorname{Aut}(A/K)$, note that for any $c$ a [[elimination of imaginaries|code]] for the $H$-orbit of $\gamma$ and for any $\sigma \in \operatorname{Aut}(\mathbb{M}/K)$, $\sigma$ fixes $c$ if and only if the restriction $\sigma \restriction A$ permutes $H.\gamma$. Since $\gamma$ generates $A$, any automorphism in $\operatorname{Aut}(A/K)$ is determined by where it sends $\gamma$, so $\sigma \restriction A \operatorname{.} \gamma \in H.\gamma \iff \sigma \restriction A \in H$. In particular, since $H.\gamma$ is finite, $c$ is actually $H.\gamma$-definable, hence $A$-definable. Since $A$ is definably closed, $c \in A$, and so $c \in \mathsf{Fix}(H)$. If $g \in \mathsf{Stab}(\mathsf{Fix}(H))$, $g$ in particular fixes $c$, hence $g \in H$, and it's clear that $H \subseteq \mathsf{Stab}(\mathsf{Fix}(H))$. $\square$ \hypertarget{the_case_for_infinite_extensions}{}\subsection*{{The case for infinite extensions}}\label{the_case_for_infinite_extensions} We'll get the case for infinite extensions by just classifying all subextensions of $\operatorname{acl}(A)/\operatorname{dcl}(A)$ at once. \hypertarget{the_modeltheoretic_absolute_galois_group}{}\subsubsection*{{The model-theoretic absolute Galois group}}\label{the_modeltheoretic_absolute_galois_group} Let $\mathbb{M} \models T$ be a [[monster model]]. Let $A$ be a small parameter set. $\operatorname{acl}(A)$ is a normal extension of $A$, because every finite $A$-definable set splits into $\operatorname{Aut}(\mathbb{M}/A)$-orbits. The \emph{absolute Galois group} $\operatorname{Gal}(A)$ of $A$ is $\operatorname{Aut}(\operatorname{acl}(A)/\operatorname{dcl}(A)$. (For example, in $\mathsf{ACF}$, this recovers the usual absolute Galois group.) Now, $\operatorname{acl}(A)$ is the colimit of the diagram of finite $A$-definable sets. From [[commutativity of limits and colimits]], we know that whenever $F : \mathbf{C} \to G \text{-} \mathbf{Set}$ is a cofiltered diagram of $G$-sets, then taking orbits of $\underset{\longleftarrow}{\lim}F$ is the same as taking a limit of the orbits. Dually, if we take automorphism groups, we get: \begin{displaymath} \operatorname{Aut}\left(\underset{\longrightarrow}{\lim} F\right) \simeq \underset{\longleftarrow}{\lim} \left(F(c) \right). \end{displaymath} So $\operatorname{Gal}(A)$ is profinite. \hypertarget{the_fundamental_theorem_of_modeltheoretic_galois_theory}{}\subsubsection*{{The fundamental theorem of model-theoretic Galois theory}}\label{the_fundamental_theorem_of_modeltheoretic_galois_theory} \textbf{Theorem.} Let $T$ be a first-order theory which [[elimination of imaginaries|eliminates imaginaries]], and let $\mathbb{M} \models T$ be a [[monster model|monster]]. Let $A \subseteq \mathbb{M}$ be a small parameter set. Then there is a bijective order-reversing correspondence \begin{displaymath} \mathsf{Fix} : \operatorname{Sub}_{\text{Krull-closed}}\left(\operatorname{Gal}(A)\right) \leftrightarrows \operatorname{Sub}_{\text{dcl-closed}}\left(\operatorname{acl}(A)/\operatorname{dcl}(A)\right) : \mathsf{Stab} \end{displaymath} given by taking a subgroup closed in the [[profinite group|profinite topology]] of $\operatorname{Gal}(A)$ to its fixed points and by taking a definably-closed intermediate extension of $\operatorname{acl}(A)/\operatorname{dcl}(A)$ to its stabilizer. \emph{Proof.} That $\mathsf{Fix}$ is left-inverse to $\mathsf{Stab}$ again follows from being in a monster. On the other hand, let $H$ be a closed subgroup. $H$ is an intersection of basic open subgroups $H_i$ which are preimages of $\operatorname{Aut}(B_i/A)$, for $B_i$ finite and $A$-definable. Fixing an ordering on the $B_i$ and treating them as tuples, obtain codes $c_i$ for the orbit of each $B_i$ under $\operatorname{Aut}(B_i/A)$. Since each $B_i$ is finite $A-definable$, $c_i$ is $A$-algebraic. The stabilizer of each $c_i$ is precisely $H_i$, so $H = \bigcap_{i \in I} \mathsf{Stab}(c_i)$. Since each $c_i$ is fixed by $H$, whenever $g \in \mathsf{Stab} \left(\mathsf{Fix}(H) \right)$, then in fact $g \in H$. $\square$ \hypertarget{model_theory_and_the_tannakian_formalism}{}\subsection*{{Model theory and the Tannakian formalism}}\label{model_theory_and_the_tannakian_formalism} In the motivating examples (see below) it turns out that Galois (i.e. relative automorphism) groups are themselves definable (i.e. arise as interpretations in the model of internal groups in $\mathbf{Def}(T)$.) In this case what you're taking the Galois group of must formally resemble an [[internal diagram]] on this [[group object|internal group]]; in model theory these are studied as what model theorists call \emph{internal covers}. A structure theorem of Hrushovski makes this correspondence explicit: internal covers are torsors of definable groupoids and vice-versa; see \href{http://arxiv.org/abs/math/0603413}{here}. All internal groups in $\mathbf{Def}(\mathsf{ACF})$ are in fact algebraic groups, so this is reminiscent of reconstruction results arising from [[Tannaka duality]]. As it turns out, one can make this analogy explicit and recover a slightly-weakened version of the Tannakian formalism for algebraic groups using the theory of internal covers; see the paper by Moshe Kamensky \href{https://arxiv.org/abs/0908.0604}{here}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} If $T = \mathsf{ACF}$ the [[theory of algebraically closed fields]], this recovers the classical fundamental theorem of Galois theory. If $T = \mathsf{DCF}$ the [[theory of differentially closed fields]], this recovers [[differential Galois theory]]. (In fact, Kolchin's work was what inspired Poizat to introduce imaginaries and work out classical Galois theory in a model-theoretic setting.) Any theory $T$ can be conservatively interpreted inside a theory $T^{\operatorname{eq}}$ which eliminates imaginaries and hence ``admits a Galois theory.'' This is the [[coherent logic|coherent]] special case of a result Olivia Caramello spells out in very general terms in her monograph on topological (toposic) Galois theory. \hypertarget{discussion}{}\subsection*{{Discussion}}\label{discussion} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Galois theory]] \item [[Grothendieck's Galois theory]] \item [[elimination of imaginaries]] \item [[definable closure|algebraic type]] \item [[Tannaka duality]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Bruno Poizat, \emph{Une Theorie de Galois Imaginaire}. \item Bruno Poizat, \emph{A Course in Model Theory}. \item Alice Medvedev and Ramin Takloo-Bighash, \href{http://arxiv.org/abs/0909.4340}{\emph{An invitation to model-theoretic Galois theory}} \end{itemize} [[!redirects model theoretic Galois theory]] \end{document}