\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{modular equivariant elliptic cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{elliptic_cohomology}{}\paragraph*{{Elliptic cohomology}}\label{elliptic_cohomology} [[!include elliptic cohomology -- contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{General}{General}\dotfill \pageref*{General} \linebreak \noindent\hyperlink{MotivationFromStringTheory}{Motivation from string theory}\dotfill \pageref*{MotivationFromStringTheory} \linebreak \noindent\hyperlink{Definition}{Definition and construction}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The universal [[elliptic cohomology]] [[cohomology theory|cohomology]] called [[tmf]] may be realized (after [[local spectrum|localization]] at some primes) as the [[homotopy fixed points]] of an [[∞-action]] of the [[modular group]] modulo a [[congruence subgroup]] in direct analogy to how [[KO-theory]] arises as the $\mathbb{Z}_2$-homotopy fixed points of [[KU-theory]] (\hyperlink{MahowaldRezk09}{Mahowald-Rezk 09}, \hyperlink{LawsonNaumann12}{Lawson-Naumann 12}). This construction extends to equip [[tmf]] [[level structure on an elliptic curve|for level structure]] with -- almost -- the structure of a [[naive G-spectrum]] (hence a [[Bredon cohomology|Bredon equivariant cohomology theory]]) for pieces of the [[modular group]] (\hyperlink{HillLawson13}{Hill-Lawson 13, theorem 9.1}). \hypertarget{General}{}\subsubsection*{{General}}\label{General} The way this works is roughly indicated in the following table (\hyperlink{LawsonNaumann12}{Lawson-Naumann 12}, \hyperlink{HillLawson13}{Hill-Lawson 13}): [[!include moduli stack of curves -- table]] For [[K-theory]] this relation induces the $\mathbb{Z}_2$-[[equivariant cohomology]]-version of [[KU]] which is [[KR-theory]]. In direct analogy to this one may hence consider $SL_2(\mathbb{Z}/n\mathbb{Z})$-equivariant versions of [[tmf]] (localized at some primes). This maybe deserves to be called \emph{modular equivariant elliptic cohomology}. This hasn't been studied much yet (or not at all), but there is some motivation for this from [[string theory]] (see \hyperlink{MotivationFromStringTheory}{below}) and in this context a relevance of modular equivariant elliptic cohomology theory has been conjectured in (\hyperlink{KrizSati05}{Kriz-Sati 05, p.3, p. 17, 18}). \hypertarget{MotivationFromStringTheory}{}\subsubsection*{{Motivation from string theory}}\label{MotivationFromStringTheory} A relevant role of some modular equivariant elliptic cohomology theory in [[string theory]] has been conjectured in (\hyperlink{KrizSati05}{Kriz-Sati 05, p. 3, p. 17, 18}): First of all, $\mathbb{Z}_2$-equivariant [[topological K-theory]], hence [[KR-theory]], is what controls the [[D-brane charges]] in general [[orientifold]] [[vacua]] of [[type II superstring theory]] (hence also of [[type I superstring theory]], which is thereby a special case). Next, there are various hints (\hyperlink{KrizSati04a}{Kriz-Sati 04a}, \hyperlink{KrizSati04b}{Kriz-Sati 04b} \hyperlink{KrizSati05}{Kriz-Sati 05}, \hyperlink{Sati05}{Sati 05}) that lifting [[string theory]] to ``[[M-theory]]'' involves replacing K-theory by [[elliptic cohomology]]. Not the least of these is the [[String orientation of tmf]] (\hyperlink{AndoHopkinsStrickland01}{Ando-Hopkins-Strickland 01}, \hyperlink{AndoHopkinsRezk10}{Ando-Hopkins-Rezk 10}), which shows that where the [[partition function]] of a [[superparticle]] (such as that at the end of the [[type II superstring]] ending on a [[D-brane]]) is given by the [[Todd genus]] in [[KU-theory]], so the partition function of the [[superstring]] itself (possibly itself being the boundary of the [[M2-brane]] ending on a [[O9 plane]] ([[heterotic string]]) or on an [[M5-brane]] (self-dual ``M-string'')) is given by the refined [[Witten genus]] in [[elliptic cohomology]]/[[tmf]] (thus yielding ``O9-plane charge'' and [[M5-brane charge]] in [[elliptic cohomology]] (\hyperlink{Sati10}{Sati 10})). [[!include genera and partition functions - table]] Finally, the [[M-theory]]-lift of [[type II string theory]] is (or is naturally identified as) \emph{[[F-theory]]}, which describes the [[axio-dilaton]] of the type II string [[vacua]] including the [[modular group|modular]] [[S-duality]]/[[U-duality]] acting on this as an [[elliptic fibration]] over [[spacetime]] (whose [[monodromy]] ``homology invariant'' is hence an $SL_2(\mathbb{Z})$-[[local system]]). It is hence natural to suspect that the combined [[worldsheet]]/[[target space]] $\mathbb{Z}_2$-equivariance of [[orientifold]] [[type II superstring]] backgrounds which is captured by [[KR-theory]] lifts in [[F-theory]] to some combined worldsheet/target space [[modular group]]-action. This is excatly what would be captured by modular [[equivariant cohomology|equivariant]] $tmf$ as indicated above (and as realized by theorem \ref{TheEquivariantConstruction} below), and and it is what is conjectured in (\hyperlink{KrizSati05}{Kriz-Sati 05, p.3}) (there the group $SL_2(\mathbb{Z}/2\mathbb{Z})$ is mentioned, the explicit construction \hyperlink{Definition}{below} does capture this but also includes equivariance under all other $SL_2(\mathbb{Z}/n\mathbb{Z})$). So by extrapolation from the case of [[orientifolds]], where the [[target space]] $\mathbb{Z}_2$-[[involution]] (the ``[[real space]]''-structure) is accompanied by a $\mathbb{Z}_2$-action on the [[worldsheet]] (the [[worldsheet parity operator]]), this would suggest that in modular equivariant F-theory [[S-duality]] operations on the target space background would be accompanied by certain modular action on the worldsheet. Mathematically this is precisely what happens in the equivariant version of [[tmf]] established by theorem \ref{TheEquivariantConstruction} below, which by prop. \ref{SystemOfModuliStacks} has the modular group action on the [[spectrum]] induced from the canonical action of the [[modular group]] on moduli of [[elliptic curves]] (hence: [[genus of a surface|genus]]-1 [[worldsheets]]). Physically such an effect seems not to have been discussed much, but at least the following is knonw: first of all, under [[S-duality]] the [[worldsheet]] theory of the [[type IIB superstring]] certainly is affected: the superstring here is generally a [[(p,q)-string]], being a [[bound state]] of $p$ actual fundamental strings ([[F1-branes]]) with $q$ [[D1-branes]], and the [[S-duality]] [[modular group]] $SL_2(\mathbb{Z})$ does act canonically on these pairs of [[integers]]. Now, that this operation has to be accompanied with a worldsheet [[conformal transformation]] as the above mathematical story would suggest has been highlighted for instance in (\hyperlink{Bandos00}{Bandos 00}). Generally, notice that the [[elliptic genus]] for [[type II superstrings]] lands in [[modular forms]] for the [[congruence subgroup]] $\Gamma_0(2) \hookrightarrow SL_2(\mathbb{Z})$ inside the full [[modular group]] (see at \href{Witten+genus#ModularityForTypeIISuperstring}{Witten genus -- Modularity -- For type II superstring}), the subgroup which fixes one of the NS-R [[spin structures]]. Therefore if this [[elliptic genus]] does have a ``topological'' (homotopy theoretic) lift to [[elliptic cohomology]] (as is known for the [[heterotic string]] via the [[string orientation of tmf]]) then not to plain [[TMF]], but to $TMF_0(2) \simeq \Gamma(\mathcal{M}_{ell}(2)_0,\mathcal{O}^{top})$ (this is implified for instance in \hyperlink{Stojanoska11}{Stojanoska 11, remark 6.2}), where $\mathcal{M}_{ell}(2)_0$ is the moduli stack of [[elliptic curves with level structure]] for $\Gamma_0(2)$, see at \emph{[[tmf0(2)]]}. \hypertarget{Definition}{}\subsection*{{Definition and construction}}\label{Definition} Write $\hat {\mathbb{Z}}$ for the [[profinite completion of the integers]]. Write \begin{displaymath} G \coloneqq GL_2(\hat {\mathbb{Z}}) \end{displaymath} for the [[general linear group]] in [[dimension]] 2 with [[coefficients]] in $\hat{\mathbb{Z}}$. Notice that this is the [[profinite group]] obtained as the [[limit]] over all general linear groups with coefficients in the [[cyclic groups]] (e.g.\hyperlink{Greicius09}{Greicius 09, (1.1)}) \begin{displaymath} GL_2(\widehat{\mathbb{Z}}) \coloneqq GL_2(\underset{\leftarrow}{\lim})_n GL_2(\mathbb{Z}/n\mathbb{Z}) \simeq \underset{\leftarrow}{\lim}_n GL_2(\mathbb{Z}/n\mathbb{Z}) \,. \end{displaymath} Write \begin{displaymath} p \;\colon\; GL_2(\mathbb{Z}) \longrightarrow G \end{displaymath} for the canonical projection from (the $\mathbb{Z}_2$-[[central extension]] $GL_2(\mathbb{Z}) \to PSL_2(\mathbb{Z})$ of) the [[modular group]]. For $n \in \mathbb{N}$ any [[natural number]] write \begin{displaymath} p_n \;\colon\; G \longrightarrow GL_2(\mathbb{Z}/n\mathbb{Z}) \end{displaymath} for the corresponding [[projection]] to [[coefficients]] in the [[cyclic group]] of [[order of a group|order]] $n$. Notice that for $\Gamma \hookrightarrow SL_2(\mathbb{Z}/n\mathbb{Z})$ then its [[preimage]] under $p_n$ is a ``profinite [[congruence subgroup]]''. The following is a variant of the [[orbit category]] of $G = GL_2(\hat {\mathbb{Z}})$ which remembers the stage $n$ and consists only of orbits of the form of [[cosets]] by such [[congruence subgroups]]. \begin{defn} \label{LevelledOrbitCategory}\hypertarget{LevelledOrbitCategory}{} Write $\widetilde{Orb}_{GL_2(\hat{\mathbb{Z}})}$ for the [[category]] whose \begin{itemize}% \item [[objects]] are [[pairs]] $(n,\Gamma)$ with $n \in \mathbb{N}$ a [[natural number]] and $\Gamma \hookrightarrow GL_2(\mathbb{Z}/n\mathbb{Z})$ a [[subgroup]]; \item [[morphisms]] are given by \begin{displaymath} Hom\left(\left(n_1,\Gamma_1\right), \left(n_2,\Gamma_2\right)\right) \coloneqq \left\{ \itexarray{ Hom_{GL_2\left(\hat{\mathbb{Z}}\right)} \left( GL_2\left(\hat{\mathbb{Z}}\right) / p_{n_1}^{-1}\left(\Gamma_1\right), \; GL_2\left(\hat{\mathbb{Z}}\right) / p_{n_2}^{-1}\left(\Gamma_2\right) \right) & if \; n'|n \\ \emptyset & otherwise } \right. \,. \end{displaymath} \end{itemize} \end{defn} This is (\hyperlink{HillLawson13}{Hill-Lawson 13, def. 3.15}). \begin{prop} \label{SystemOfModuliStacks}\hypertarget{SystemOfModuliStacks}{} The construction for each $(n,\Gamma) \in \widetilde{Orb}_{GL_2(\hat{\mathbb{Z}})}$ of the [[Deligne-Mumford compactification|compactified]] [[moduli stack]] $\mathcal{M}_{\overline{ell}}(\Gamma)$ over $Spec(\mathbb{Z}[\frac{1}{n}])$ of [[elliptic curves with level structure]] determined by $\Gamma$ (a [[modular curve]]) extends to a (lax) [[2-functor]] \begin{displaymath} \mathcal{M}_{\overline{ell}}(-) \;\colon\; \widetilde{Orb}_{GL_2(\hat{\mathbb{Z}})} \longrightarrow DMStack \end{displaymath} from the levelled orbit category of def. \ref{LevelledOrbitCategory} to the [[2-category]] of [[Deligne-Mumford stacks]], such that \begin{enumerate}% \item $\mathcal{M}_{\overline{ell}}(1,1) \simeq \mathcal{M}_{\overline{ell}}$ is the standard compactified [[moduli stack of elliptic curves]] over $Spec(\mathbb{Z})$ \item for each morphism $(n_1,\Gamma_1)\to (n_2,\Gamma_2)$ the induced morphism \begin{displaymath} \mathcal{M}_{\overline{ell}}(n_1,\Gamma_1)\to \mathcal{M}_{\overline{ell}}(n_2,\Gamma_2) \end{displaymath} is a [[log-etale morphism]] [[covering]]; \item for each $n$ and each [[normal subgroup]] inclusion $K \hookrightarrow \Gamma \hookrightarrow GL_2(\mathbb{Z}/n\mathbb{Z})$ the induced map exhibits the [[homotopy quotient]] [[projection]] by $\Gamma/K$ \begin{displaymath} \mathcal{M}_{\overline{ell}}(n,K)\to \mathcal{M}_{\overline{ell}}(n,\Gamma) \simeq \mathcal{M}_{\overline{ell}}(n,K)//(\Gamma/K) \,. \end{displaymath} \end{enumerate} \end{prop} This is (\hyperlink{HillLawson13}{Hill-Lawson 13, prop. 3.16, prop. 3.17}). \begin{theorem} \label{TheEquivariantConstruction}\hypertarget{TheEquivariantConstruction}{} It is possible to extend the [[Goerss-Hopkins-Miller theorem]] to the [[Deligne-Mumford compactification|compactified]] [[moduli stacks]] of [[elliptic curves with level-n structure]] $\mathcal{M}_{\overline{ell}}[n]$ in prop. \ref{SystemOfModuliStacks}, such that taking [[global sections]] produces an [[(∞,1)-presheaf]] on the levelled [[orbit category]] of def. \ref{LevelledOrbitCategory} with values in [[E-∞ rings]] \begin{displaymath} Tmf \;\colon\; (\widetilde{Orb}_{SL_2(\hat{\mathbb{Z}})})^{op} \longrightarrow CRing_\infty \end{displaymath} which is such that \begin{enumerate}% \item for $n = 1$ (where $SL_2(\mathbb{Z}/\mathbb{Z}) = 1$ and hence $\Gamma = 1$ necessarily) one recovers $Tmf(1,1)\simeq$ [[Tmf]]; \item the morphism induced by any morphism of the form $(n k ,P_k(\Gamma))\to (n,\Gamma)$ is $k$-[[localization of a spectrum|localization]]; \item for any $n \in \mathbb{N}$ and every [[normal subgroup]] $K \hookrightarrow \Gamma \hookrightarrow GL_2(\mathbb{Z}/n\mathbb{Z})$, we have the $(\Gamma/K)$-[[homotopy fixed points]] of $Tmf(n,\Gamma)$ (induced by action of $\Gamma/K$ on $\mathcal{M}_{\overline{ell}}(\Gamma)$ given by prop. \ref{SystemOfModuliStacks}): \begin{displaymath} Tmf(n,\Gamma) \stackrel{\simeq}{\longrightarrow} Tmf(K)^{(\Gamma/K)} \,. \end{displaymath} \end{enumerate} \end{theorem} This is (\hyperlink{HillLawson13}{Hill-Lawson 13, theorem 9.1}). \begin{remark} \label{}\hypertarget{}{} The system of spectra in theorem \ref{TheEquivariantConstruction} is essentially a [[spectrum with G-action]] (see there) for $G$ the ``[[profinite completion of the integers|profinite]] [[modular group]]'' $GL_2(\hat {\mathbb{Z}})$, except that the parameterization is not quite over the [[orbit category]] of this $G$, but just to the subcategory on objects which are [[coset spaces]] just by [[congruence subgroups]] and subject to that divisibility constraint on the $n$s, the ``levelling''. So $Tmf(-)$ defines a ``levelled'' kind of genuine $GL_2(\hat {\mathbb{Z}})$-[[equivariant cohomology]] version of [[Tmf]]. \end{remark} The following proposition gives one way how the modular equivariance of [[tmf]] as in theorem \ref{TheEquivariantConstruction} restricts to the $\mathbb{Z}_2$-equivariance of [[KU]] (hence [[KR-theory]], which is known to be the precise form of [[type II string theory]] [[orientifolds]]). First observe (see also (\hyperlink{MahowaldRezk09}{Mahowald-Rezk 09, section 2})) that for [[elliptic curve with level structure|level 3 structure]] we have [[congruence subgroups]] \begin{displaymath} \Gamma_1(3) \hookrightarrow \Gamma_0(3) \hookrightarrow GL(2,\mathbb{Z}/3\mathbb{Z}) \end{displaymath} where the first inclusion is a [[normal subgroup]] of [[index of a subgroup|index]] 2. \begin{prop} \label{}\hypertarget{}{} The inclusion of the [[nodal cubic|nodal elliptic curve]] with its $\mathbb{Z}/2\mathbb{Z}$-worth of [[automorphisms]] (the [[inversion involution]]) as the [[cusp]] of the [[Deligne-Mumford compactification|compactified]] [[moduli stack of elliptic curves]] \begin{displaymath} \itexarray{ \ast &\to& \mathcal{M}_{\overline{ell}}(3,\Gamma_1) \\ \downarrow^{\mathrlap{\mathbb{Z}/2\mathbb{Z}}} && \downarrow^{\mathbb{Z}/2\mathbb{Z}} \\ \ast//(\mathbb{Z}/2\mathbb{Z}) &\hookrightarrow& \mathcal{M}_{\overline{ell}}(3,\Gamma_0) } \end{displaymath} over $Spec(\mathbb{Z}[\tfrac{1}{3}])$ yields under theorem \ref{TheEquivariantConstruction} a diagram of the form \begin{displaymath} \itexarray{ ku[\frac{1}{3}] &\leftarrow& tmf_1(3) \\ \uparrow && \uparrow \\ ko[\frac{1}{3}] &\leftarrow& tmf_0(3) } \,. \end{displaymath} \end{prop} (\hyperlink{HillLawson13}{Hill-Lawson 13, theorem 9.3}) \begin{remark} \label{}\hypertarget{}{} The spectrum \begin{displaymath} Tmf_1(3) \coloneqq Tmf(3,\Gamma_1) \end{displaymath} (first considered in (\hyperlink{MahowaldRezk09}{Mahowald-Rezk 09}), see at \emph{[[congruence subgroup]]} for the notation) is [[complex oriented cohomology theory|complex oriented]] (\hyperlink{HillLawson13}{Hill-Lawson 13, p.5}) (in contrast to [[Tmf]] $\simeq Tmf(1,1)$). This is one more way in which the inclusion \begin{displaymath} \itexarray{ Tmf_1(3) \\ \uparrow \\ Tmf } \end{displaymath} is analogous to the inclusion of [[KO]] into [[KU]] \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[real-oriented generalized cohomology theory]] \item related but different: \emph{[[equivariant elliptic cohomology]]} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Mark Mahowald]] [[Charles Rezk]], \emph{Topological modular forms of level 3}, Pure Appl. Math. Quar. 5 (2009) 853-872 (\href{http://www.math.uiuc.edu/~rezk/tmf3-paper-final.pdf}{pdf}) \item [[Vesna Stojanoska]], \emph{Duality for Topological Modular Forms}, Documenta Math. 17 (2012), 271--311 (\href{http://arxiv.org/abs/1105.3968}{arXiv:1105.3968}) \item [[Tyler Lawson]], [[Niko Naumann]], \emph{Strictly commutative realizations of diagrams over the Steenrod algebra and topological modular forms at the prime 2}, Int. Math. Res. Not. (2013) (\href{http://arxiv.org/abs/1203.1696}{arXiv:1203.1696}) \item [[Michael Hill]], [[Tyler Lawson]], \emph{Topological modular forms with level structure} (\href{http://arxiv.org/abs/1312.7394}{arXiv:1312.7394}) \item [[Matthew Ando]], [[Michael Hopkins]], [[Neil Strickland]], \emph{Elliptic spectra, the Witten genus and the theorem of the cube}, Invent. Math. 146 (2001) 595--687 MR1869850 \item [[Matthew Ando]], [[Mike Hopkins]], [[Charles Rezk]], \emph{Multiplicative orientations of KO-theory and the spectrum of topological modular forms}, 2010 (\href{http://www.math.uiuc.edu/~mando/papers/koandtmf.pdf}{pdf}) \item [[Igor Kriz]], [[Hisham Sati]], \emph{M Theory, Type IIA Superstrings, and Elliptic Cohomology}, Adv.Theor.Math.Phys. 8 (2004) 345-395 (\href{http://arxiv.org/abs/hep-th/0404013}{arXiv:hep-th/0404013}) \item [[Igor Kriz]], [[Hisham Sati]], \emph{Type IIB String Theory, S-Duality, and Generalized Cohomology}, Nucl.Phys. B715 (2005) 639-664 (\href{http://arxiv.org/abs/hep-th/0410293}{arXiv:hep-th/0410293}) \item [[Igor Kriz]], [[Hisham Sati]], \emph{Type II string theory and modularity}, JHEP 0508 (2005) 038 (\href{http://arxiv.org/abs/hep-th/0501060}{arXiv:hep-th/0501060}) \item [[Igor Kriz]], Hao Xing, \emph{On effective F-theory action in type IIA compactifications} (\href{http://arxiv.org/abs/hep-th/0511011}{arXiv:hep-th/0511011}) \item [[Hisham Sati]], \emph{The Elliptic curves in gauge theory, string theory, and cohomology}, JHEP 0603 (2006) 096 (\href{http://arxiv.org/abs/hep-th/0511087}{arXiv:hep-th/0511087}) \item [[Hisham Sati]], \emph{[[Geometric and topological structures related to M-branes]]} , part I, Proc. Symp. Pure Math. 81 (2010), 181-236 \href{http://arxiv.org/abs/1001.5020}{arXiv:1001.5020} \item [[Igor Bandos]], \emph{Superembedding Approach and S-Duality. A unified description of superstring and super-D1-brane}, Nucl.Phys.B599:197-227,2001 (\href{http://arxiv.org/abs/hep-th/0008249}{arXiv:hep-th/0008249}) \item [[Aaron Greicius]], \emph{Elliptic curves with surjective adelic Galois representations} (\href{http://arxiv.org/abs/0901.2513}{arXiv:0901.2513}) \end{itemize} [[!redirects modular equivariant tmf]] \end{document}