\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{modular form} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{elliptic_cohomology}{}\paragraph*{{Elliptic cohomology}}\label{elliptic_cohomology} [[!include elliptic cohomology -- contents]] \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_components}{In components}\dotfill \pageref*{in_components} \linebreak \noindent\hyperlink{AsSections}{As sections of a line bundle over the moduli stack}\dotfill \pageref*{AsSections} \linebreak \noindent\hyperlink{ForCongruenceSubgroups}{For congruence subgroups}\dotfill \pageref*{ForCongruenceSubgroups} \linebreak \noindent\hyperlink{AsAutomorphicForms}{As automorphic forms}\dotfill \pageref*{AsAutomorphicForms} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_of__to_the_elliptic_genus}{Relation of $MF_0(2)$ to the elliptic genus}\dotfill \pageref*{relation_of__to_the_elliptic_genus} \linebreak \noindent\hyperlink{relation_to_elliptic_cohomology}{Relation to elliptic cohomology}\dotfill \pageref*{relation_to_elliptic_cohomology} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{modular form} is a [[holomorphic function]] on the [[upper half-plane]] that satisfies certain transformation property under the [[action]] of the [[modular group]]. Abstractly this transformation property makes the function a [[section]] of a certain [[line bundle]] on the [[quotient]] of the [[upper half plane]] that makes it the [[moduli stack of elliptic curves]] (over the [[complex numbers]]) or more generally the [[Riemann moduli space]] for [[Riemann surfaces]] of given [[genus]]. Modular forms are also often called \emph{classical [[automorphic forms]]}, see \href{}{below} Modular forms appear as the [[coefficient]] ring of the [[Witten genus]] on manifolds with rational [[string structure]]. For manifolds with actual [[string structure]] this refines to [[topological modular forms]], which are the [[homotopy groups]] of the [[spectrum]] [[tmf]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_components}{}\subsubsection*{{In components}}\label{in_components} \begin{defn} \label{}\hypertarget{}{} An \textbf{(integral) [[modular form]]} of weight $w$ is a [[holomorphic function]] on the [[upper half-plane]] \begin{displaymath} f : (\mathbb{R}^2)_+ \hookrightarrow \mathbb{C} \end{displaymath} (complex numbers with strictly positive imaginary part) such that \begin{enumerate}% \item if $A = \left( \itexarray{a & b \\ c& d}\right) \in SL_2(\mathbb{Z})$ acting by $A : \tau \mapsto = \frac{a \tau + b }{c \tau + d}$ we have \begin{displaymath} f(A(\tau)) = (c \tau + d)^w f(\tau) \end{displaymath} (notice that for $A = \left( \itexarray{1 & 1 \\ 0& 1}\right)$ then $f(\tau + 1) = f(\tau)$) \item $f$ has at worst a pole at $\{0\}$ (for \emph{weak} modular forms this condition is relaxed) it follows that $f = f(q)$ with $q = e^{2 \pi i \tau}$ is a meromorphic funtion on the open disk. \item \textbf{integrality} $\tilde f(q) = \sum_{k = -N}^\infty a_k \cdot q^k$ then $a_k \in \mathbb{Z}$ \end{enumerate} \end{defn} More generally there is such a definition for $SL(2,\mathbb{Z})$ replaced by any other arithmetic subgroup $\Gamma \subset SL(2,\mathbb{R})$ (e.g. \hyperlink{Litt}{Litt, def.1}), giving modular forms on a [[Riemann moduli spaces]]. \hypertarget{AsSections}{}\subsubsection*{{As sections of a line bundle over the moduli stack}}\label{AsSections} More abstractly, for $\mathcal{M}_{ell}$ the [[moduli stack of elliptic curves]] (or rather its [[Deligne-Mumford compactification]]) and $A \to \mathcal{M}_{ell}$ the corresponding universal bundle, write $\Omega^1_{A/S}$ for the [[line bundle]] of fiberwise [[Kähler differential forms]]. Write $e$ for the 0-[[section]] of this line bundle. Then \begin{displaymath} \omega \coloneqq e^\ast \Omega^1_{A/S} \end{displaymath} is a [[line bundle]] over the [[moduli stack of elliptic curves]]. A modular form of weight $k$ is a [[section]] of $\omega^{\otimes k}$ \hypertarget{ForCongruenceSubgroups}{}\subsubsection*{{For congruence subgroups}}\label{ForCongruenceSubgroups} Similarly one considers modular forms for [[congruence subgroups]] of the full [[modular group]], hence on the space of [[elliptic curves with level structure]]. \hypertarget{AsAutomorphicForms}{}\subsubsection*{{As automorphic forms}}\label{AsAutomorphicForms} Instead of regarding, as \hyperlink{AsSections}{above}, modular forms as [[sections]] of a [[line bundle]] on a [[quotient]] of the [[upper half plane]], one may regard them alternatively as plain functions, but on the ([[Möbius group|projective]]) [[special linear group]] $SL(2,\mathbb{R})$. (e.g. \href{Martin13}{Martin 13, section 2}, \hyperlink{Litt}{Litt, section 2}). As such these functions are then invariant under the [[action]] of the [[modular group|modular]] [[subgroup]] $SL(2,\mathbb{Z})\hookrightarrow SL(2,\mathbb{R})$ and hence are really functions on the [[coset space]] $SL(2,\mathbb{R})/SL(2,\mathbb{Z})$ (for forms on moduli of elliptic curves) or more generally $\Gamma \backslash SL(2,\mathbb{Z})$ (for forms on moduli of more general [[Riemann surfaces]]). This generalizes to the case of other [[congruence subgroups]] (as \href{ForCongruenceSubgroups}{above}). Generally such functions on [[coset spaces]] like this are called \emph{[[automorphic forms]]}. See there for more. For the history of the terminology ``modular form''/``automorphic form'' see also \href{http://mathoverflow.net/a/124785/381}{this MO comment}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_of__to_the_elliptic_genus}{}\subsubsection*{{Relation of $MF_0(2)$ to the elliptic genus}}\label{relation_of__to_the_elliptic_genus} Write $\Gamma_0(2) \hookrightarrow SL_2(\mathbb{Z})$ for the [[subgroup]] of the [[modular group]] on those elements $\left(\itexarray{a & b \\ c & d}\right)$ for which $c = 0\, mod\, 2$. A modular function for $\Gamma_0(2)$ is a [[meromorphic function]] on the [[upper half plane]] which transforms as a modular form under the action of $\Gamma_0(2) \hookrightarrow SL_2(\mathbb{Z})$. Write $MF_\bullet(\Gamma_0(2))$ for the ring of these. There is a natural isomorphism \begin{displaymath} MF_\bullet(\Gamma_0(2)) \simeq \mathbb{C}[\epsilon, \delta] \end{displaymath} (see at [[elliptic genus]]) for the notation. (\hyperlink{LandweberRavenelStong93}{Landweber-Ravenel-Stong 93, theorem 1.5 and sections 5.3, 5.8}) \hypertarget{relation_to_elliptic_cohomology}{}\subsubsection*{{Relation to elliptic cohomology}}\label{relation_to_elliptic_cohomology} For $E$ the [[elliptic cohomology theory]] associated to the [[elliptic curve]] $C$, then \begin{displaymath} E_{2n} \simeq \omega(C)^{\otimes n} \end{displaymath} (where $\omega$ is the line bundle from \hyperlink{AsSections}{above}) and \begin{displaymath} E_{2n+1}\simeq 0 \,. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Eisenstein series]] \item [[j-invariant]] \item [[Weierstrass sigma-function]] \item [[Dedekind eta function]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Jacobi form]] \item [[elliptic genus]], [[Witten genus]] \item [[topological modular form]], [[tmf]] \item generalization to functions on moduli of higher dimensional [[abelian varieties]]: [[Hilbert modular form]], [[Siegel modular forms]] \item [[modularity theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A basic and handy reference is \begin{itemize}% \item [[Pierre Deligne]], \emph{Courbes elliptiques: formulaire d'apres J. Tate}, In \emph{Modular functions of one variable}, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pages 53\{73. Lecture Notes in Math., Vol. 476. Springer, Berlin, 1975 (\href{http://modular.math.washington.edu/Tables/antwerp/deligne/}{web}) \end{itemize} Textbook accounts include \begin{itemize}% \item N. Koblitz, \emph{Introduction to Elliptic Curves and Modular Forms}, Graduate Texts in Math, vol. 97, Springer-Verlag, 1984, 1993 (2nd ed.). \end{itemize} Lecture notes and reviews include \begin{itemize}% \item Richard Hain, section 4 of \emph{Lectures on Moduli Spaces of Elliptic Curves} (\href{http://arxiv.org/abs/0812.1803}{arXiv:0812.1803}) \item [[Charles Rezk]], section 10 of \href{http://www.math.uiuc.edu/~rezk/512-spr2001-notes.pdf}{pdf} \item [[Daniel Litt]], \emph{Automorphic forms notes, part I} (\href{http://math.stanford.edu/~dlitt/Talks/automorphicformspt1.pdf}{pdf}) \item Jan Hendrik Bruinier, Gerard van der Geer, [[Günter Harder]], Don Zagier, \emph{The 1-2-3 of modular forms}, Lectures at a Summer School 2004 in Nordfjordeid, Norway; Universitext, Springer 2008. \item [[Nora Ganter]], \emph{\href{http://www.ms.unimelb.edu.au/~nganter/talbot/index.html}{Topological modular forms literature list}} \item Kimball Martin, \emph{A brief overview of modular and automorphic forms}, 2013 \href{http://www2.math.ou.edu/~kmartin/papers/mfs.pdf}{pdf} \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Modular_form}{Modular form}} \end{itemize} Original discussion in the context of [[elliptic genera]] and [[elliptic cohomology]] includes \begin{itemize}% \item [[Peter Landweber]], [[Douglas Ravenel]], [[Robert Stong]], \emph{Periodic cohomology theories defined by elliptic curves}, in [[Haynes Miller]] et. al. (eds.), \emph{The Cech centennial: A conference on homotopy theory}, June 1993, AMS (1995) (\href{http://www.math.sciences.univ-nantes.fr/~hossein/GdT-Elliptique/Landweber-Ravenel-Stong.pdf}{pdf}) \item [[Peter Landweber]], \emph{Elliptic Cohomology and Modular Forms}, in \emph{Elliptic Curves and Modular Forms in Algebraic Topology}, Lecture Notes in Mathematics Volume 1326, 1988, pp 55-68 ([[LandweberEllipticModular.pdf:file]]) \end{itemize} Reviews of this include \begin{itemize}% \item [[Kefeng Liu]], \emph{Modular forms and topology}, 1996 (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.9779}{citeseer}) \end{itemize} [[!redirects modular forms]] [[!redirects integral modular form]] [[!redirects weak modular form]] [[!redirects modular function]] [[!redirects integral modular function]] [[!redirects weak integral modular form]] [[!redirects integral modular forms]] [[!redirects weak modular forms]] [[!redirects modular functions]] [[!redirects integral modular functions]] [[!redirects weak integral modular forms]] \end{document}