\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{modular lattice} \begin{quote}% This is about a notion in \emph{[[order theory]]/[[logic]]}. For an unrelated notion of a similar name in [[group theory]]/[[quadratic form]]-theory see at \emph{[[modular integral lattice]]}. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(0,1)$-Category theory}}\label{category_theory} [[!include (0,1)-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{alternative_formulations}{Alternative formulations}\dotfill \pageref*{alternative_formulations} \linebreak \noindent\hyperlink{proofs_of_equivalence}{Proofs of equivalence}\dotfill \pageref*{proofs_of_equivalence} \linebreak \noindent\hyperlink{derivation_of_modular_identity}{Derivation of modular identity}\dotfill \pageref*{derivation_of_modular_identity} \linebreak \noindent\hyperlink{modular_law__modular_identity}{Modular law $\Leftrightarrow$ modular identity}\dotfill \pageref*{modular_law__modular_identity} \linebreak \noindent\hyperlink{freyds_modular_law__modular_identity}{Freyd's modular law $\Leftrightarrow$ modular identity}\dotfill \pageref*{freyds_modular_law__modular_identity} \linebreak \noindent\hyperlink{modular_identity__definition_1}{Modular identity $\Rightarrow$ definition 1}\dotfill \pageref*{modular_identity__definition_1} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{characterization}{Characterization}\dotfill \pageref*{characterization} \linebreak \noindent\hyperlink{free_modular_lattices}{Free modular lattices}\dotfill \pageref*{free_modular_lattices} \linebreak \noindent\hyperlink{see_also}{See also}\dotfill \pageref*{see_also} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{modular lattice} is a lattice where ``opposite sides'' of a ``diamond'' formed by four points $x \wedge y$, $x$, $y$, $x \vee y$ are ``congruent''. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A modular lattice is a [[lattice]] which satisfies a modular law, which we introduce after a few preliminaries. In any lattice $L$, given two elements $x, y \in L$ with $x \leq y$, let $[x, y]$ denote the [[interval]] $\{z \colon x \leq z \leq y\}$. Then, given any two elements $a, b \in L$, there is an [[adjunction|adjoint pair]] \begin{displaymath} a \vee (-) \colon [a \wedge b, b] \leftrightarrows [a, a \vee b] \colon (-) \wedge b \end{displaymath} where $a \vee (-)$ is left adjoint to $(-) \wedge b$. Indeed, for any $w \in [a \wedge b, b]$, we have a [[adjunction|unit]] \begin{displaymath} w \leq (a \vee w) \wedge b, \end{displaymath} whereas for any $z \in [a, a \vee b]$, we have dually a [[adjunction|counit]] \begin{displaymath} a \vee (z \wedge b) \leq z. \end{displaymath} \begin{defn} \label{}\hypertarget{}{} A lattice $L$ is \textbf{modular} if for any $a, b \in L$, the adjoint pair \begin{displaymath} a \vee (-) \dashv (-) \wedge b \colon [a, a \vee b] \to [a \wedge b, b] \end{displaymath} is an [[adjoint equivalence]]. \end{defn} This is perhaps the most memorable definition for a category theorist: it is a precise expression of the slogan given in the Idea section. It is immediate that the concept of modular lattice is \textbf{[[duality|self-dual]]}, i.e., if $L$ is modular, then so is $L^{op}$. \hypertarget{alternative_formulations}{}\subsection*{{Alternative formulations}}\label{alternative_formulations} In the lattice-theoretic literature, modularity is usually formulated somewhat differently. Here are three alternative conditions on a lattice, all equivalent to that of Definition 1. \begin{enumerate}% \item The \textbf{modular law} is the universal [[Horn theory|Horn sentence]] \begin{displaymath} a \leq b \vdash (a \vee z) \wedge b = a \vee (z \wedge b). \end{displaymath} \item The \textbf{modular identity} is the universal equation \begin{displaymath} (a \vee z) \wedge (a \vee b) = a \vee (z \wedge (a \vee b)) \end{displaymath} \item ``\textbf{Freyd's modular law}'' (for lack of better term; see [[allegory]]) is the universal inequality \begin{displaymath} (a \vee z) \wedge b \leq a \vee (z \wedge (a \vee b)). \end{displaymath} \end{enumerate} \hypertarget{proofs_of_equivalence}{}\subsubsection*{{Proofs of equivalence}}\label{proofs_of_equivalence} \hypertarget{derivation_of_modular_identity}{}\paragraph*{{Derivation of modular identity}}\label{derivation_of_modular_identity} To see that the modular identity follows from Definition 1, observe that for any $z \in L$ we have \begin{displaymath} a \leq (a \vee z) \wedge (a \vee b) \leq a \vee b \end{displaymath} Let $w = (a \vee z) \wedge (a \vee b)$. Under $(-) \wedge b \colon [a, a \vee b] \to [a \wedge b, b]$, this element $w$ is sent to \begin{displaymath} (a \vee z) \wedge (a \vee b) \wedge b = (a \vee z) \wedge b. \end{displaymath} Under Definition 1, this last element is sent back to $w$ by $a \vee (-)$. Therefore we have \begin{displaymath} (a \vee z) \wedge (a \vee b) = w = a \vee ((a \vee z) \wedge b) \end{displaymath} and since this is true for all $a, b, z$, we can interchange $z$ and $b$ and rearrange by commutativity to get \begin{displaymath} (a \vee z) \wedge (a \wedge b) = a \vee (z \wedge (a \vee b)) \end{displaymath} which is the modular identity. \hypertarget{modular_law__modular_identity}{}\paragraph*{{Modular law $\Leftrightarrow$ modular identity}}\label{modular_law__modular_identity} To get the modular law from the modular identity, just use the fact that the hypothesis $a \leq b$ is equivalent to $a \vee b = b$, and use this to substitute $b$ for $a \vee b$ in the modular identity. Conversely, from the tautology $a \leq a \vee b$, we can instantiate the modular law to derive the modular identity. \hypertarget{freyds_modular_law__modular_identity}{}\paragraph*{{Freyd's modular law $\Leftrightarrow$ modular identity}}\label{freyds_modular_law__modular_identity} From the tautology $(a \vee z) \wedge b \leq (a \vee z) \wedge (a \vee b)$, it is clear that Freyd's modular law follows from the modular identity. Conversely, by substituting $a \vee b$ for $b$ in Freyd's modular law, we derive the special case \begin{displaymath} (a \vee z) \wedge (a \vee b) \leq a \vee (z \wedge (a \vee b)) \end{displaymath} whereas the opposite inequality \begin{displaymath} a \vee (z \wedge (a \vee b)) \leq (a \vee z) \wedge (a \vee b) \end{displaymath} holds in any lattice, so the modular identity follows from Freyd's modular law. \hypertarget{modular_identity__definition_1}{}\paragraph*{{Modular identity $\Rightarrow$ definition 1}}\label{modular_identity__definition_1} Finally, we derive the adjoint equivalence of Definition 1 from the modular identity. One half of the adjoint equivalence states that if $a \leq z \leq a \vee b$, then $z = a \vee (z \wedge b)$; if this holds, then the other half follows because it is the dual statement. If $a \leq z \leq a \vee b$, then \begin{displaymath} z = (a \vee b) \wedge z = (a \vee b) \wedge (a \vee z) \end{displaymath} just by the laws of a lattice. By the modular identity (again switching $b$ and $z$), the right side equals $a \vee (b \wedge (a \vee z))$. But since $a \vee z = z$, this equals $a \vee (b \wedge z) = a \vee (z \wedge b)$, as was to be shown. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Every [[distributive lattice]], e.g., a [[Heyting algebra]], is modular. Indeed, if $a \leq b$ in a distributive lattice, we have \begin{displaymath} (a \vee z) \wedge b = (a \wedge b) \vee (z \wedge b) = a \vee (z \wedge b) \end{displaymath} which proves the modular law. \item For any [[Mal'cev variety]] or Mal'cev [[algebraic theory]], the lattice of internal [[equivalence relations]] of an algebra is a modular lattice. The equivalence classes often arise as cosets of kernels; for example, for a [[vector space]] $V$, equivalence relations correspond to subspaces of $V$, and form a modular lattice. Other examples include the lattice of [[normal subgroups]] of a [[group]], the lattice of two-sided [[ideals]] of a [[ring]], etc. \item In fact, any lattice of commuting equivalence relations on a [[set]] is a modular lattice (being a suballegory of the [[allegory]] of sets, one in which composition provides the join). \item Every abstract [[projective plane]] gives rise to a modular lattice $L$ whose underlying set is the disjoint union \begin{displaymath} \{0\} \cup \{1\} \cup \{points\} \cup \{lines\} \end{displaymath} where $0$ is taken as bottom, $1$ as top, the points are atoms, and the lines are coatoms, ordered by the incidence relation. The projective plane need not be Desarguesian. \item [[Young–Fibonacci lattice]] \end{itemize} \hypertarget{characterization}{}\subsection*{{Characterization}}\label{characterization} The smallest non-modular lattice has 5 elements and is called the \emph{pentagon}, denoted $N_5$. It can be described as the lattice $\{\bot, a, b, c, \top\}$ where $b \leq c$ and $a$ is incomparable with $b$ and $c$. \begin{theorem} \label{}\hypertarget{}{} \textbf{(Dedekind)} A lattice $L$ is modular if and only if there is no injective function $f \colon N_5 \to L$ that preserves meets and joins. \end{theorem} (Notice we are leaving out the condition of preservation of the top and bottom elements.) The direction $\Rightarrow$ is easy enough: $L$ being modular is incompatible with an injective $f: N_5 \to L$ preserving meets and joins, since we contradict the modular law in $L$ by applying $f$ to $(b \vee a) \wedge c = \top \wedge c = c$ and $b \vee (a \wedge c) = b \vee \bot = b$. This is reminiscent of forbidden minor characterizations of certain classes of graphs; see [[graph minor]]. There is a similar ``forbidden sublattice'' characterization of [[distributive lattices]] -- see this \hyperlink{Lein}{comment} by Tom Leinster at the $n$-Category Caf\'e{}. \hypertarget{free_modular_lattices}{}\subsection*{{Free modular lattices}}\label{free_modular_lattices} Free modular lattices tend to be complicated. \hyperlink{Ded}{Dedekind} showed that the free modular lattice on 3 elements has 28 elements; its [[Hasse diagram]] can be seen in these \href{http://www.math.hawaii.edu/~jb/math618/os9uh.pdf}{lecture notes} by J.B. Nation (chapter 9, page 100). N.B.: this notion of lattice is meant with respect to the signature $(\wedge, \vee)$; if we include top and bottom constants in the signature, then the free modular lattice on three elements has 30 elements. A compelling illustration (in gif form) which exhibits [[triality]] of this lattice is given in this $n$-Category Caf\'e{} \href{https://golem.ph.utexas.edu/category/2015/09/the_free_modular_lattice_on_3.html#c049649}{post}, as part of a larger discussion which explores the connection with linear representations of the [[quiver]] $D_4$ (the [[Coxeter diagram]] of $SO(8)$). For $n \geq 4$, the free modular lattice generated by $n$ elements is infinite and in fact has an undecidable word problem (Freese, Herrmann). \hypertarget{see_also}{}\subsection*{{See also}}\label{see_also} \begin{itemize}% \item [[allegory]] \item [[orthomodular lattice]] \item [[distributive lattice]] \item [[geometric lattice]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Richard Dedekind]], ``\"U{}ber die von drei Moduln erzeugte Dualgruppe gemeinsamen Teiler'', Math. Annalen 53 (1900), 371--403, reprinted in \emph{Gesammelte mathematische Werke}, Vol. 2, pp. 236--271, Chelsea, New York, 1968. \end{itemize} \begin{itemize}% \item C. Herrmann, ``On the word problem for the modular lattice with four free generators'', Mathematische Annalen 265 (1983), 513-527. (\href{http://www.springerlink.com/content/w862594668m2n375/}{Springerlink}) \item J.B. Nation, \emph{Revised Notes on Lattice Theory}. Available here: (\href{http://www.math.hawaii.edu/~jb/}{web}) \item [[Tom Leinster]], Comment on Sol\`e{}r's Theorem, December 4, 2010. (\href{http://golem.ph.utexas.edu/category/2010/12/solers_theorem.html#c035900}{link}) \end{itemize} [[!redirects modular lattices]] \end{document}