\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{moduli space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{yoneda_lemma}{}\paragraph*{{Yoneda lemma}}\label{yoneda_lemma} [[!include Yoneda lemma - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{caveat}{Caveat}\dotfill \pageref*{caveat} \linebreak \noindent\hyperlink{history}{History}\dotfill \pageref*{history} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{coarse_moduli_space}{Coarse moduli space}\dotfill \pageref*{coarse_moduli_space} \linebreak \noindent\hyperlink{because}{``\ldots{} because they have automorphisms.''}\dotfill \pageref*{because} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{rough idea} is (but see the \hyperlink{caveat}{caveat} below) that the term \textbf{moduli space} is essentially a synonym for [[representable functor|representing object]] and for [[classifying space]]. People tend to say ``classifying space'' when in the context of [[topology]], and they tend to say \emph{moduli space} when in a context of [[complex geometry]] or [[algebraic geometry]]. More precisely, when a moduli space actually does exist as an ordinary space (or [[scheme]]), it is called for emphasis a \textbf{fine moduli space}. Fine here refers to the completeness of the description, not shared by coarse moduli below. Those classifying ``spaces'' that are called moduli spaces are typically [[orbifold]]s, hence modeled not just as spaces but as [[groupoid]]s with extra structure. These are typically conceived as [[stack]]s: these are then called \textbf{[[moduli stack]]}s. Typically these are demanded to be [[Deligne-Mumford stack]]s. So the term \emph{fine moduli space} mainly indicates that a given object that might be a [[Deligne-Mumford stack]] is actually just a plain [[scheme]]. But there is also the notion of \textbf{coarse moduli space}, which is a kind of conceptual hack designed to be able to keep thinking about what really wants to be a [[stack]] still as a plain [[sheaf]]. A coarse moduli space is one that at least has the right underlying [[set]] of points as the \emph{right} [[moduli stack]] has: as long as we don't look at families but just at single things, it does give the right information. From the point of view of [[derived algebraic geometry]], the coarse moduli spaces are 0-truncations of derived [[moduli stacks]] when they exist. \hypertarget{caveat}{}\subsubsection*{{Caveat}}\label{caveat} But one has to be \textbf{careful with this rough idea}: as there is usually some \textbf{implicit fine print} in the notion of moduli space: while [[classifying space]] is the term typically used for a [[representable functor|representing object]] in a [[homotopy category]], a representing object is usually called a \emph{moduli space} only if it lives in the ``original'' category. For more on this see the chapter \begin{itemize}% \item \hyperlink{because}{\ldots{} because they have automorphisms} \end{itemize} below. \hypertarget{history}{}\subsection*{{History}}\label{history} The term possibly originates with Riemann, who was the first to study what are now called moduli spaces of (compact) [[Riemann surface]]s. A ``modulus'' here is meant to be a \emph{parameter} that parameterizes isomorphism classes of Riemann surfaces. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \ldots{} \hypertarget{coarse_moduli_space}{}\subsubsection*{{Coarse moduli space}}\label{coarse_moduli_space} A \textbf{coarse moduli space} for a [[presheaf]] $(Sch/\mathbb{C})^{op} \to Set$ on complex [[scheme]]s is a [[scheme]] $M \in Sch/\mathbb{C}$ equipped with a morphism \begin{displaymath} \Psi_M : F \to h_M \,, \end{displaymath} where $h$ denotes the [[Yoneda embedding]], such that a) $F(Spec(\mathbb{C})) \to h_M(Spec \mathbb{C}) = hom(Spec \mathbb{C}, M)$ is a [[bijection]] b) given $M'$ and $\Psi_{M'} : F \to h_{M'}$ then there exists unique $M \to M'$ such that $\itexarray{ F && \stackrel{\Psi_{M'}}{\to}&& h_{M'} \\ & {}_{\Psi_M}\searrow && \nearrow \\ && h_M}$ So a coarse moduli space is one that at least has the right underlying set of points as the \emph{right} [[moduli stack]] has: as long as we don't look at families but just at single things, it does give the right information. From the point of view of [[derived algebraic geometry]], the coarse moduli spaces are 0-truncations of derived [[moduli stacks]] when they exist. \hypertarget{because}{}\subsection*{{``\ldots{} because they have automorphisms.''}}\label{because} A widespread slogan is \begin{quote}% \textbf{Slogan}: A type of objects that has nontrivial [[automorphism]]s cannot have a fine moduli space. \end{quote} The typical example motivating and illustrating this slogan is the example of [[elliptic curve]]s: from a single [[elliptic curve]] $E$ with a non-trivial automorphism $\alpha : E \to E$ one may build, for instance, the family $\mathcal{E} \to S^1 \times S^1$ of elliptic curves over the torus which is obtained by starting with the trivial family $E \times S^1 \times [0,1] \to S^1 \times [0,1]$ over the cylinder and then by gluing the two ends by identifying the fiber using the automorphism $\alpha$. The resulting family is \emph{locally trivial} but globally nontrivial. Such locally trivial but globally non-trivial families can in principle not be classified by a representing object in the category of spaces that we are working with, as long as the [[Grothendieck topology]] which we use to say what a locally trivial family is is [[subcanonical coverage|subcanonical]]: for assume that a classifying object $K$ exists in our category and assume that at least one globally nontrivial but locally trivial family $\mathcal{E} \to X$ exists in the category. Then by definition of local triviality there exists a covering [[sieve]] $\{U_i \to X\}$ such that the [[pullback]] of $\mathcal{E}$ to each $U_i$ is equivalent to the trivial family over $U_i$. Accordingly, it will be represented by the trivial element in $Hom(U_i, K)$. But if $\{U_i \to X\}$ is a covering [[sieve]] in a subcanonical topology, then it follows from the [[sheaf]] property of the [[representable functor|representable presheaf]] $Hom(-,K)$ that there is a unique element in $Hom(X,K)$ whose restriction to all the $U_i$ represents the trivial family. But the trivial family over $X$ has this property and hence must be that unique element. Accordingly, it would follow that there is no non-trivial family classified by $K$ over $X$, which is a contradiction and shows that the ``fine moduli space'' $K$ cannot exist under the given assumptions. Notice well the two assumptions that were made to make this argument work: \begin{enumerate}% \item the topology with which we glue families must be subcanonical: this is the assumption that fails for the situations in which one would speak of [[classifying space]]s instead of moduli spaces: For instance [[vector space]]s do certainly have nontrivial [[automorphism]]s. A (topological, say) family of vector space is a [[vector bundle]]. So a naive application of the above argument might lead one to conclude that there cannot be a classifying space of vector bundles! But of course it is a standard fact that there there are [[topological space]]s $\mathcal{B} U(n)$ such that [[homotopy]] classes of continuous maps $X \to \mathcal{B} U(n)$ classify isomorphism classes of rank-$n$ [[vector bundle]]s. But this means that the functor that assigns families of vector bundles to topological space is -- while not [[representable functor|representable]] in [[Top]] -- representable in the [[homotopy category]] $Ho(Top)$ \begin{displaymath} Rank n VectBund(X)/iso \simeq Hom_{Ho(Top)}(X, \mathcal{B} U(n)) \,. \end{displaymath} This might make the [[classifying space]] $\mathcal{B} U(n)$ look like something that deserves to be called a fine moduli space. But one should beware that the standard [[Grothendieck topology]] of [[Top]], which is [[subcanonical coverage|subcanonical]] in [[Top]] is not so in $Ho(Top)$: the functor $Hom_{Ho(Top)}(-, \mathcal{B} U(m))$ has a non-standard opinion about what it means to glue two topological spaces to a third one. That's how in $Ho(Top)$ the above argument that ``automorphisms prevent a classifying object'' breaks down. In fact, there is a theorem by [[Danny Stevenson]] and [[David Roberts]], extending a theorem by [[John Baez]] and Danny Stevenson that shows that large classes of [[principal ∞-bundle]]s, even, do have classifying topological spaces in this sense. These are objects that not only have automorphisms, but have automorphisms of automorphisms, etc, and hence seem to contradict the above slogan in a maximal way. But these examples also indicate why it may be misguided to think of the ``classifying spaces'' such as $\mathcal{B} U(n)$ as being moduli spaces in the first place: the [[homotopy category]] $Ho(Top)$ in fact regards its objects -- even though they are presented as [[topological space]]s -- not really as spaces but as the [[∞-groupoid]]s that they are equivalent to under the [[homotopy hypothesis]]. So in that sense objects such as $\mathcal{B} U(n)$ are not classifying spaces, but are classifying [[groupoid]]s after all. \item Another situation that makes the above argument break down is if the category of ``spaces'' that one works with is such that gluing trivial families by nontrivial automorphisms never produces globally nontrivial families. For instance because the category of ``spaces'' is such that no nontrivial families exist at all. This happens for instance in the case that we take a ``space'' to be simply a (finite, say) [[set]]. In the category [[Set]] of (finite) sets every fiber bundle $\mathcal{E} \to X$ (i.e. every surjection such that all fibers are isomorphic to a typical fiber $F$ ) are necessarily globally trivial in that they are isomorphic to $F \times X \to X$. And in fact, there \emph{is} a ``fine moduli space'' in this context (inside the category of non-necessarily finite sets), namely the set $\mathbb{N}$ of natural numbers: the family $(\mathcal{E} \to X) \in Set$ with typical fiber the $n$-element set is classified by the map that sends all $x \in X$ to $n \in \mathbb{N}$. \end{enumerate} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} [[!include moduli spaces -- contents]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[moduli]], [[moduli problem]], [[moduli stack]] \item [[classifying space]]. [[moduli stack]] \item [[classifying morphism]], [[modulating morphism]] \item [[representable functor]] \item [[classifying space]], [[classifying stack]], [[classifying topos]] \item [[moduli stack]], [[derived moduli space]], [[Deligne-Mumford stack]] \item [[geometric invariant theory]], [[Moduli Problems and DG-Lie Algebras]], \item [[universal principal bundle]], [[universal principal infinity-bundle]], * [[moduli space of curves]], \item [[Hilbert scheme]], [[Quot scheme]], [[Picard scheme]], [[moduli stabilization]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \begin{itemize}% \item [[David Ben-Zvi]], \emph{Moduli spaces} (\href{http://www.math.utexas.edu/users/benzvi/math/pcm0178.pdf}{pdf}) \item [[Ib Madsen]], \emph{Moduli spaces from a topological viewpoint}, ICM 2006 (\href{http://www.icm2006.org/proceedings/Vol_I/20.pdf}{pdf}) \end{itemize} A bit of elementary exposition of these ideas is at \begin{itemize}% \item [[basic ideas of moduli stacks of curves and Gromov-Witten theory]] \end{itemize} [[!redirects moduli spaces]] [[!redirects space of moduli]] [[!redirects fine moduli space]] [[!redirects coarse moduli space]] [[!redirects fine moduli spaces]] [[!redirects coarse moduli spaces]] \end{document}