\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{moduli space of connections} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{compactness}{Compactness}\dotfill \pageref*{compactness} \linebreak \noindent\hyperlink{over_complex_manifolds__complex_varieties}{Over complex manifolds / complex varieties}\dotfill \pageref*{over_complex_manifolds__complex_varieties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{FlatConnectionsOverATorus}{Flat connections over a torus}\dotfill \pageref*{FlatConnectionsOverATorus} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[moduli space]] of [[connections on bundles]] over some prescribed [[space]]. Often one considers [[flat connections]] only, see at \emph{[[moduli space of flat connections]]}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{compactness}{}\subsubsection*{{Compactness}}\label{compactness} If $\Sigma$ is a [[compact topological space|compact]] [[smooth manifold]], then the moduli space of flat connections over $\Sigma$ is compact. \hypertarget{over_complex_manifolds__complex_varieties}{}\subsubsection*{{Over complex manifolds / complex varieties}}\label{over_complex_manifolds__complex_varieties} Over a [[complex manifold]]/[[complex variety]], the [[Koszul-Malgrange theorem]] identifies holomorphic [[flat connections]] on [[complex vector bundles]] with [[holomorphic vector bundles]]. This identifies the moduli space of flat connections as a [[complex manifold]] with (a non-abelian version of) the first Griffiths [[intermediate Jacobian]]. See at \emph{\href{http://nlab.mathforge.org/nlab/show/intermediate+Jacobian#ExamplePicard}{intermediate Jacobian -- Examples -- k=0}}. More specifically over a [[Riemann surface]] \emph{[[Narasimhan–Seshadri theorem]]} identifies the [[moduli spaces of flat connections]] with that of certain [[complex manifold|complex]] spaces of [[stable vector bundle|stable]] [[holomorphic vector bundles]]. This space appears as the [[phase space]] for [[Chern-Simons theory]] over that surface. See there for more. More generally, the [[Donaldson-Uhlenbeck-Yau theorem]] similarly gives a [[Kähler structure]] on the moduli space of flat connections also over higher dimensional K\"a{}hler manifolds (\hyperlink{ScheinostSchottenloher96}{Scheinost-Schottenloher 96, corollary 1.16}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{FlatConnectionsOverATorus}{}\subsubsection*{{Flat connections over a torus}}\label{FlatConnectionsOverATorus} Let $G$ be a [[compact Lie group]]. Assume either that $G$ is [[simply connected]] or is a [[torus]] (what we really need below is that any two commuting elements in $G$ sit jointly in one [[maximal torus]]). The moduli space of $G$ [[flat connections]] on a 2-dimensional [[torus]] $A \simeq S^1 \times S^1$ (e.g. underlying a complex [[elliptic curve]]) has the following description: first, the [[moduli stack]] of flat connections is \begin{displaymath} \begin{aligned} [\Pi(A), \mathbf{B}G] & \simeq [B [A, S^1], \mathbf{B}G] \\ & \simeq Hom_{Grp}(\mathbb{Z} \times \mathbb{Z}, G)//_{ad} G \end{aligned} \end{displaymath} (see also the discussion at \emph{\href{http://ncatlab.org/nlab/show/group+character#CharactersAndFundamentalGroupsOfTori}{characters and fundamental groups of tori}}). Here a single [[flat connection]] is just a choice of pair of two commuting elements in $G$, and $G$ acts on that by [[conjugation]]. Now any two commuting elements can be taken to sit in a [[maximal torus]] $T \hookrightarrow G$, and up to [[conjugation]] we can take this to be one fixed maximal torus. This means that the moduli space is actually \begin{displaymath} \pi_0 \left( Hom_{Grp}([A,S^1], G)//_{ad} G \right) \simeq Hom_{Grp}([A, S^1], T)/W \,, \end{displaymath} where $W$ is the [[Weyl group]] $W = N_G(T)/T$. Moreover, by [[Pontryagin duality]] this may be re-expressed as \begin{displaymath} \cdots \simeq Hom_{Grp}([T,S^1], A)/W \,. \end{displaymath} where now $[T,S^1]$ is the [[character group]] of the [[maximal torus]]. In this form the moduli space of flat connections appears prominently for instance in the discussion of [[equivariant elliptic cohomology]]. But beware that the above interpretation in [[algebraic geometry]] is at least more subtle, see (\hyperlink{Lurie15}{Lurie 15}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Donaldson-Uhlenbeck-Yau theorem]] \item [[Tamagawa numbers]] \item [[Hitchin connection]] \end{itemize} [[!include moduli spaces -- contents]] \hypertarget{references}{}\subsection*{{References}}\label{references} Original articles include \begin{itemize}% \item [[Michael Atiyah]], [[Raoul Bott]], \emph{The Yang-Mills equations over Riemann surfaces}, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 308, No. 1505 (Mar. 17, 1983), pp. 523-615 (\href{http://www.jstor.org/stable/37156}{jstor}, \href{http://math.stackexchange.com/a/295505/58526}{lighning summary}) \item Nan-Kuo Ho, Chiu-Chu Melissa Liu, \emph{On the Connectedness of Moduli Spaces of Flat Connections over Compact Surfaces}, Canad. J. Math. 56(2004), 1228-1236 (\href{https://cms.math.ca/10.4153/CJM-2004-053-3}{publisher}) \end{itemize} Reviews and lecture notes include, for the case of flat connections \begin{itemize}% \item Remi Janner, \emph{Notes on the moduli space of flat connections}, 2005 (\href{https://www.researchgate.net/publication/265223952_Notes_on_the_moduli_space_of_flat_connections}{pdf}) \item Daan Michiels, \emph{Moduli spaces of flat connections}, Master Thesis Leuven 2013 (\href{http://www.staff.science.uu.nl/~Schat001/Daan_thesis.pdf}{pdf}) \item [[Jörg Teschner]], \emph{Quantization of moduli spaces of flat connections and Liouville theory}, proceedings of the International Congress of Mathematics 2014 (\href{http://arxiv.org/abs/1405.0359}{arXiv:1405.0359}) \item [[Vladimir Fock]], [[Alexander Goncharov]], \emph{Symplectic double for moduli spaces of G-local systems on surfaces} (\href{http://arxiv.org/abs/1410.3526}{arXiv:1410.3526}) \end{itemize} and for the case of general and [[logarithmic connections]] \begin{itemize}% \item Indranil Biswas, V.Munoz, \emph{Moduli spaces of connections on a Riemann surface} (\href{http://www.mat.ucm.es/~vmunozve/Moduli.pdf}{pdf}) \end{itemize} Detailed discussion of moduli space of flat connections also on higher dimensional base spaces is in \begin{itemize}% \item Peter Scheinost, [[Martin Schottenloher]], pp. 154 (11 of 76) of \emph{Metaplectic quantization of the moduli spaces of flat and parabolic bundles}, J. reine angew. Mathematik, 466 (1996) (\href{https://eudml.org/doc/153753}{web}) \end{itemize} For more references see at \emph{[[Hitchin connection]]}. Discussion in [[algebraic geometry]] includes \begin{itemize}% \item [[Jacob Lurie]], \emph{\href{http://mathoverflow.net/a/226716/381}{MO comment}} 2015 \end{itemize} [[!redirects moduli spaces of connections]] [[!redirects moduli space of flat connections]] [[!redirects moduli spaces of flat connections]] [[!redirects moduli stack of connections]] [[!redirects moduli stacks of connections]] [[!redirects moduli stack of flat connections]] [[!redirects moduli stacks of flat connections]] \end{document}