\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{moduli stack of elliptic curves} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{elliptic_cohomology}{}\paragraph*{{Elliptic cohomology}}\label{elliptic_cohomology} [[!include elliptic cohomology -- contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{DescriptionOverTheComplexNumbers}{Description over the complex numbers}\dotfill \pageref*{DescriptionOverTheComplexNumbers} \linebreak \noindent\hyperlink{upper_half_plane}{Upper half plane}\dotfill \pageref*{upper_half_plane} \linebreak \noindent\hyperlink{the_naive_moduli_space_and_its_problems}{The naive moduli space and its problems}\dotfill \pageref*{the_naive_moduli_space_and_its_problems} \linebreak \noindent\hyperlink{moduli_space_of_framed_elliptic_curves}{Moduli space of framed elliptic curves}\dotfill \pageref*{moduli_space_of_framed_elliptic_curves} \linebreak \noindent\hyperlink{moduli_stackorbifold_of_elliptic_curves}{Moduli stack/orbifold of elliptic curves}\dotfill \pageref*{moduli_stackorbifold_of_elliptic_curves} \linebreak \noindent\hyperlink{compactified_moduli_stack}{Compactified moduli stack}\dotfill \pageref*{compactified_moduli_stack} \linebreak \noindent\hyperlink{DescriptionOverGeneralSchemes}{Description over general schemes}\dotfill \pageref*{DescriptionOverGeneralSchemes} \linebreak \noindent\hyperlink{InEInfinityGeometry}{As a derived scheme in $E_\infty$-geometry}\dotfill \pageref*{InEInfinityGeometry} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{finite_covers}{Finite covers}\dotfill \pageref*{finite_covers} \linebreak \noindent\hyperlink{cohomology}{Cohomology}\dotfill \pageref*{cohomology} \linebreak \noindent\hyperlink{EulerCharacteristic}{Euler characteristic}\dotfill \pageref*{EulerCharacteristic} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{moduli stack of elliptic curves} is a [[moduli stack]] of [[elliptic curves]], hence a [[stack]] $\mathcal{M}_{ell}$ such that for $X$ any other suitable [[space]], the [[groupoid]] of maps $X \to \mathcal{M}_{ell}$ and [[homotopies]] between them is [[equivalence of groupoids|equivalent]] to that of $X$-parameterized [[elliptic curves]] with equivalences between these. (There are some variants of $\mathcal{M}_{ell}$ corresponding to the choice of which singularities and degeneracies of elliptic curves are taken into account.) This is formalized in [[algebraic geometry]], hence $X$ here is a [[scheme]] over the [[integers]] in general. The moduli stack always has a tautological construction as a ``[[sheaf]] of [[groupoids]]'' (a [[stack]], whence the name) over the [[site]] of [[affine schemes]], given by sending any $Spec(R)$ to the groupoid of suitable [[elliptic curves]] over $Spec(R)$. For concrete computations it typically helps to know that the moduli stack of elliptic curbes is [[representable functor|represented]] by a [[geometric stack]], [[Isbell duality|dually]] given by a [[Hopf algebroid]]. The moduli stack $\mathcal{M}_{ell}$ has a [[Deligne-Mumford compactification|compactification]] $\mathcal{M}_{\overline{ell}}$ obtained by adding the [[nodal cubic curve]], and often (but not always) this compactified version is the default meaning of ``moduli stack of elliptic curves''. Adding also the [[cuspidal cubic curve]] and hence all [[cubic curves]] produces the full moduli stack $\mathcal{M}_{cub}$ of cubic curves, inside which $\mathcal{M}_{ell}$ sits as the locus of non-singular curves. Since an [[elliptic curve]] is a [[arithmetic genus|genus-1]] [[algebraic curve]] with a marked point (the neutral element of the [[group]] structure), $\mathcal{M}_{ell}$ is equivalently the [[moduli stack of algebraic curves]] for genus $g = 1$ with $n = 1$ punctures, and as such is often equivalently written \begin{displaymath} \mathcal{M}_{1,1} = \mathcal{M}_{ell} \,. \end{displaymath} A special class of cases which is much simpler than the general case but still of paramount interest is the moduli stack of elliptic curves over the [[complex numbers]], hence of maps $Spec(\mathbb{C}) \to \mathcal{M}_{ell}$. These are just [[complex manifold|complex]] [[tori]]/[[Riemannian manifolds]] of [[genus of a surface|genus]] 1 which may be identified with quotients of the [[complex plane]] by a framed [[lattice]] well-defined up to [[Möbius transformations]], and so in this case the moduli stack of elliptic curves is just the [[homotopy quotient]] (the [[orbifold]] quotient) of the [[upper half plane]] by the [[action]] of the [[modular group]]. (This is equivalently the [[moduli space of curves]] $\mathcal{M}_{(1,1)}$ which in turn is a quotient of the [[Teichmüller space]] $\mathcal{T}_{(1,1)}$.) This case is considered below in \begin{itemize}% \item \emph{\hyperlink{DescriptionOverTheComplexNumbers}{Description over the complex numbers}}. \end{itemize} Below that is the \begin{itemize}% \item \emph{\hyperlink{DescriptionOverGeneralSchemes}{Description over general schemes}}. \end{itemize} as an [[algebraic stack]] $\mathcal{M}_{ell}$. This is still not the most refined description: by the [[Goerss-Hopkins-Miller theorem]] the assignment to an [[elliptic curve]] of its [[elliptic spectrum]] lifts the ordinary [[structure sheaf]] $\mathcal{O}$ of $\mathcal{M}_{ell}$ to a higher structure sheaf $\mathcal{O}^{top}$ of [[E-∞ rings]] in a way that makes $(\mathcal{M}_{ell}, \mathcal{O}^{op})$ a [[spectral Deligne-Mumford stack]]. The [[global sections]] of this structure sheaf yield the [[spectrum]] [[tmf]] of [[topological modular forms]]: \begin{itemize}% \item \emph{\hyperlink{InEInfinityGeometry}{As a derived scheme in E-infinity geometry}} \end{itemize} See also \emph{[[A Survey of Elliptic Cohomology - elliptic curves]]} for more. \hypertarget{DescriptionOverTheComplexNumbers}{}\subsection*{{Description over the complex numbers}}\label{DescriptionOverTheComplexNumbers} An [[elliptic curve]] $E \to Spec(\mathbb{C})$ over the [[complex numbers]] is determined, up to non-canonical [[isomorphism]], by its [[j-invariant]] \begin{displaymath} j(E) \in \mathbb{C} \,. \end{displaymath} Here every [[complex number]] appears as a value, and therefore the moduli space of elliptic cuves a priori is not [[compact topological space|compact]]. A [[compactification]] of the moduli space is obtained by including also elliptic curves with [[nodal singularity]]. \hypertarget{upper_half_plane}{}\subsubsection*{{Upper half plane}}\label{upper_half_plane} The [[upper half plane]] $\mathfrak{h}$ is in [[bijection]] with framed [[lattices]] in the [[complex plane]] $\mathbb{C}$, which in turn is in bijection with [[isomorphism]] classes of framed elliptic curves over $\mathbb{C}$ \begin{displaymath} \mathfrak{h} \simeq \{framed\;lattices\;in\;\mathbb{C}\} \simeq \{framed\;elliptic\;curves\;over\;\mathbb{C}\}/_\sim \end{displaymath} and we have \begin{displaymath} \{elliptic\;curves\;over\;\mathbb{C}\}_\sim \simeq \mathfrak{h}/{SL_2(\mathbb{Z})} \end{displaymath} where the [[special linear group]] over the [[integers]] \begin{displaymath} SL_2(\mathbb{Z}) = \left\{ \left(\itexarray{a & b \\ c & d }\right)| a d - c d = 1\right\} \end{displaymath} [[action|acts]] as the [[modular group]] by [[Möbius transformations]] \begin{displaymath} \tau \mapsto \frac{a \tau + b}{c \tau + d} \,. \end{displaymath} \hypertarget{the_naive_moduli_space_and_its_problems}{}\subsubsection*{{The naive moduli space and its problems}}\label{the_naive_moduli_space_and_its_problems} \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} M_{1,1} := \mathfrak{h}/SL_2(\mathbb{Z}) \end{displaymath} for the plain [[quotient]] of the [[upper half plane]] by the above group action. \end{defn} \begin{defn} \label{}\hypertarget{}{} A \textbf{homolorphic family of [[elliptic curves]]} over a [[complex manifold]] $T$ is \begin{itemize}% \item a [[holomorphic function]] $\pi : X \to T$ \item together with a [[section]] $s : T \to X$ of $\pi$ such that for any $t \in T$ the pair $(X_t, s(t))$ is an [[elliptic curve]] (using the first definition above). \end{itemize} \end{defn} For every family \begin{displaymath} \itexarray{ X \\ \downarrow^{\mathrlap{\pi}} \\ T } \end{displaymath} we would like to have $F \to M_{1,1}$ such that there is a [[pullback]] \begin{displaymath} \itexarray{ X \simeq \phi^* F &\longrightarrow& F \\ \downarrow & & \downarrow \\ T &\stackrel{\phi}{\longrightarrow}& M_{1,1} } \end{displaymath} where \begin{displaymath} \phi: t \mapsto [X_t, s(t)] \end{displaymath} such that \begin{itemize}% \item $\phi : T \to M_{1,1}$ is a [[holomorphic map]] \item every [[holomorphic map]] $T \to M_{1,1}$ corresponds to a family over $t$; \item there is a universal family over $M_{1,1}$ \end{itemize} This is \emph{impossible} . One can construct explicit counterexamples. These counterexamples involve [[elliptic curves]] with nontrivial [[automorphism]]s. For instance \begin{displaymath} \{ (x,y,z) \in \mathbb{P}^2 \times X : y^2 = x(x-1)(x-\lambda) \} \to X := \mathbb{P}^1 - \{0,1,\infty\} \end{displaymath} \begin{quote}% but see the discussion at [[moduli space]] for a discussion of the statement ``it's the automorphisms that prevent the [[moduli space]] from existing'' \end{quote} \hypertarget{moduli_space_of_framed_elliptic_curves}{}\subsubsection*{{Moduli space of framed elliptic curves}}\label{moduli_space_of_framed_elliptic_curves} consider \begin{displaymath} \mathbb{Z}^2 \hookrightarrow \mathbb{C} \times \mathfrak{h} \end{displaymath} given by \begin{displaymath} (m,n) : (z,\tau) \mapsto (z + m \tau + n, \tau) \end{displaymath} Then consider the family \begin{displaymath} \itexarray{ E := \mathbb{C}/_{\mathbb{Z}^2} \times \mathfrak{h} \\ \downarrow \\ \mathfrak{h} } \end{displaymath} is a family of [[elliptic curve]]s over $\mathfrak{h}$ and $E_\tau = \mathbb{C}/{\Lambda_\tau}$ with \begin{displaymath} \Lambda_{\tau} := \mathbb{Z}\cdot 1 \oplus \mathbb{Z}\cdot \tau \end{displaymath} is a family of framed elliptic curves. \begin{prop} \label{}\hypertarget{}{} The space $\mathfrak{h}$ with the family $E \to \mathfrak{h}$ is a [[fine moduli space]] for [[framed elliptic curves]]. \end{prop} Consider any map $\phi : T \to \mathfrak{h}$ with pullback of the universal family \begin{displaymath} \itexarray{ X \stackrel{?}{\to} \phi^* E &\to & E \\ \downarrow && \downarrow \\ T &\stackrel{\phi}{\to}& \mathfrak{h} } \end{displaymath} \textbf{claim} for every point $t \in T$ there is an open neighbourhood $t_0 \in U \hookrightarrow T$ such that one can choose [[differential form|1-forms]] $\omega_t$ on $X_\tau$ which vary holomorphically with respect to $t$. Notice that \emph{locally} every family of elliptic curves is framed (since we can locally extend a choice of basis for $H_1$). So \begin{displaymath} \itexarray{ && \mathfrak{h} \\ && \downarrow^{SL_2(\mathbb{Z})} \\ M_{1,1} &\stackrel{Id}{\to}& M_{1,1} } \end{displaymath} at $i$ and $\rho = e^{2\pi i/6}$ , $C = \{\pm I\}$ isn't locally liftable at $i$ and $\rho$ so it is not a univresal family of unframed curves. \hypertarget{moduli_stackorbifold_of_elliptic_curves}{}\subsubsection*{{Moduli stack/orbifold of elliptic curves}}\label{moduli_stackorbifold_of_elliptic_curves} \begin{defn} \label{}\hypertarget{}{} Consider the global [[quotient stack]] [[orbifold]] \begin{displaymath} \mathcal{M}_{1,1} := \mathfrak{h}//SL_2(\mathbb{Z}) \end{displaymath} of the upper half plane by the [[action]] of the [[special linear group]] over the [[integers]]. \end{defn} This is the [[moduli stack]] of elliptic curves. \hypertarget{compactified_moduli_stack}{}\subsubsection*{{Compactified moduli stack}}\label{compactified_moduli_stack} Consider the complex analytic parameterization over the [[annulus]] \begin{displaymath} \{q \in \mathbb{C} | 0 \lt {\vert q \vert} \lt 1 \} \end{displaymath} of elliptic curves \begin{displaymath} E_q \coloneqq \mathbb{C}/q^{\mathbb{Z}} \,. \end{displaymath} This has an extension to the origin, where $E_0$ is a [[nodal curve]]. Algebraically, in a [[formal neighbourhood]] of the origin, hence over $Spec(\mathbb{Z}[ [q] ])$, this is the [[Tate curve]]. e.g. (\hyperlink{Lurie}{Lurie, section 4.3}). \hypertarget{DescriptionOverGeneralSchemes}{}\subsection*{{Description over general schemes}}\label{DescriptionOverGeneralSchemes} For $S$ a [[scheme]], a [[cubic curve]] over $S$ is a scheme $p \colon X \to S$ over $S$ equipped with a [[section]] $e \colon S \to X$ and such that [[Zariski topology|Zariski locally]] on $S$, $X$ is given by an [[equation]] in $\mathbb{P}_S^2$ of the form \begin{displaymath} y^2 + a_1 x y = x^3 + a_2 x^2 + a_4 x + a_6 \end{displaymath} such that $e \colon S \to X$ is the line at infinity. Euivalently this says that $p$ is a [[proper morphism|proper]] [[flat morphism]] with a section contained in the [[smooth locus]] whose [[fibers]] are geometrically integral curves of [[arithmetic genus]] one. Write $\mathcal{M}_{cub}$ for the [[moduli stack]] of such [[cubic curves]]. Then the moduli stack of elliptic curves is the non-vanishing locus of the discriminant $\Delta \in H^0(\mathcal{M}_{cub}, \omega^{12})$ \begin{displaymath} \mathcal{M}_{ell} \hookrightarrow \mathcal{M}_{cub} \longrightarrow \mathcal{M}_{FG}. \end{displaymath} See at \emph{[[elliptic curve]]} for details. (A textbook account is in \hyperlink{Silverman09}{Silverman 09, III}, a review with an eye towards [[tmf]] is in \hyperlink{Mathew}{Mathew, section 3}). Two standard versions of [[Hopf algebroids]] representing $\mathcal{M}_{\overline{ell}}$ as a [[geometric stack]] are usefully reviewed in (\hyperlink{Mathew}{Mathew, section 4}). \hypertarget{InEInfinityGeometry}{}\subsection*{{As a derived scheme in $E_\infty$-geometry}}\label{InEInfinityGeometry} By the [[Goerss-Hopkins-Miller theorem]] the [[structure sheaf]] $\mathcal{O}$ of the moduli stack of elliptic curves lifts to a sheaf $\mathcal{O}^{top}$ of [[E-∞ rings]] which over a given [[elliptic curve]] is the corresponding [[elliptic spectrum]]. By ([[A Survey of Elliptic Cohomology|Lurie (Survey), theorem 4.1]]), this yields a [[spectral Deligne-Mumford stack]] refinement \begin{displaymath} \mathcal{M}_{ell}^{der} \coloneqq (\mathcal{M}_{ell}, \mathcal{O}^{top}) \end{displaymath} which is the moduli stack of [[derived elliptic curves]], in that there is a [[natural equivalence]] in [[E-∞ rings]] $A$ of the form \begin{displaymath} Hom(Spec(A), \mathcal{M}_{ell}^{der}) \simeq E(A) \,, \end{displaymath} where on the left we have maps of [[structured (∞,1)-toposes]] and on the right the [[∞-groupoid]] of [[derived elliptic curves]] over $A$. This is based on the representability theorem ([[A Survey of Elliptic Cohomology|Lurie (Survey), prop. 4.1]], [[Representability Theorems|Lurie (Representability)]]). In this derived picture the compactified dericed moduli space is obtained by gluing in the [[spectrum]] of [[Tate K-theory]] $KO[ [q] ] \simeq KU[ [q] ]/\mathbb{Z}_2$ by forming the [[homotopy pushout]] \begin{displaymath} \itexarray{ Spec(K((q))) &\longrightarrow& \mathcal{M}_{ell}^{der} \\ \downarrow && \downarrow \\ Spec(K[ [q] ]) &\longrightarrow& \mathcal{M}_{\overline{ell}}^{der} } \,. \end{displaymath} ([[A Survey of Elliptic Cohomology|Lurie(Survey), p. 33]]). Again, the underlying ordinary [[Deligne-Mumford stack]] is the ordinary $\mathcal{M}_{\overline{\ell}}$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{finite_covers}{}\subsubsection*{{Finite covers}}\label{finite_covers} The [[moduli space]] $\mathcal{M}_{ell}[n]$ of [[elliptic curves with level-n structure]] (for some $n \in \mathbb{N}$) provides a finite [[covering]] of $\mathcal{M}_{ell}$ (similarly for the compactifications). (Over the [[complex numbers]] this is the \emph{[[modular curve]]}). \hypertarget{cohomology}{}\subsubsection*{{Cohomology}}\label{cohomology} \begin{prop} \label{}\hypertarget{}{} \begin{displaymath} H_1(\mathcal{M}_{1,1}, \mathbb{Z}) = \mathbb{Z}/12\mathbb{Z} \end{displaymath} \begin{displaymath} H^1(\mathcal{M}_{1,1}, \mathbb{Z}) = 0 \end{displaymath} \begin{displaymath} H^2(\mathcal{M}_{1,1}, \mathbb{Z}) = \mathbb{Z}/12 \mathbb{Z} \end{displaymath} \begin{displaymath} H_\bullet(\mathcal{M}_{1,1}, \mathbb{Q}) \simeq H_\bullet(M_{1,1}, \mathbb{Q}) \end{displaymath} and similarly for [[integral cohomology]] \begin{displaymath} \chi(\mathcal{M}_{1,1}) = -\frac{1}{12} \end{displaymath} \begin{displaymath} Pic(\mathcal{M}_{1,1}) \simeq \mathbb{Z}/12\mathbb{Z} \end{displaymath} \end{prop} \hypertarget{EulerCharacteristic}{}\subsubsection*{{Euler characteristic}}\label{EulerCharacteristic} The [[orbifold Euler characteristic]] of the moduli space of complex elliptic curves is given by the [[special values of L-functions|special value]] of the [[Riemann zeta function]] at $s= -1$ \begin{displaymath} \chi(\mathcal{M}_{1,1}) = \zeta(-1) = - \frac{1}{12} \,. \end{displaymath} This is a special case of the result in (\hyperlink{ZagierHarer86}{Zagier-Harer 86}) discussed at \emph{[[moduli space of curves]]}. See also the first page here: [[EulerCharacteristicOfSpaceOfCurves.pdf:file]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[modular form]] \item [[elliptic cohomology]] \end{itemize} [[!include moduli spaces -- contents]] [[!include moduli stack of curves -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Introductory lecture notes on the moduli space of elliptic curves over the [[complex numbers]] include \begin{itemize}% \item Richard Hain, \emph{Lectures on Moduli Spaces of Elliptic Curves} (\href{http://arxiv.org/abs/0812.1803}{arXiv:0812.1803}) \item section 4 of \emph{Introduction to Orbifolds} ([[IntroductionToOrbifolds.pdf:file]]) \end{itemize} Accounts of the general case include \begin{itemize}% \item Nicholas M. Katz, [[Barry Mazur]], \emph{Arithmetic moduli of elliptic curves}, Annals of Mathematics Studies\_, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR MR772569 (86i:11024) \item [[Joseph Silverman]], \emph{The arithmetic of elliptic curves}, second ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094 (2010i:11005) \end{itemize} Lecture notes/talk notes reviewing this include \begin{itemize}% \item James Parson, \emph{Moduli of elliptic curves} (\href{http://math.stanford.edu/~conrad/vigregroup/vigre03/moduli.pdf}{pdf}) \item [[Akhil Mathew]], section 3 of \emph{The homotopy groups of $TMF$} (\href{http://math.mit.edu/~sglasman/tmfhomotopy.pdf}{pdf}) \item [[Andre Henriques]], \emph{The moduli stack of elliptic curves} (\href{http://math.mit.edu/conferences/talbot/2007/tmfproc/Chapter04/henriques.pdf}{pdf}) in \emph{Topological modular forms} Talbot workshop 2007 (\href{http://math.mit.edu/conferences/talbot/2007/tmfproc/}{web}) \end{itemize} For more of the general picture in view of [[elliptic cohomology]] and [[tmf]] see also \begin{itemize}% \item [[Jacob Lurie]], \emph{[[A Survey of Elliptic Cohomology]]} \end{itemize} The [[orbifold Euler characteristic]] of the moduli space of curves was originally computed in \begin{itemize}% \item [[Don Zagier]], John Harer, \emph{The Euler characteristic of the moduli space of curves}, Inventiones mathematicae (1986) Volume: 85, page 457-486 (\href{https://eudml.org/doc/143377}{EUDML}) \end{itemize} Reviews of the orbifold Euler characteristic computation include \begin{itemize}% \item \emph{Mathematical ideas and notions in quantum field theory -- 5. The Euler characteristic of the moduli space of curves} ([[EulerCharacteristicOfSpaceOfCurves.pdf:file]]) \end{itemize} [[!redirects moduli space of elliptic curves]] \end{document}