\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{monadic adjunction} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{monadic_adjunctions}{}\section*{{Monadic adjunctions}}\label{monadic_adjunctions} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{becks_monadicity_theorem}{Beck's monadicity theorem}\dotfill \pageref*{becks_monadicity_theorem} \linebreak \noindent\hyperlink{algebraic_categories}{Algebraic categories}\dotfill \pageref*{algebraic_categories} \linebreak \noindent\hyperlink{semanticsstructure_adjunction}{Semantics-structure adjunction}\dotfill \pageref*{semanticsstructure_adjunction} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_pages}{Related pages}\dotfill \pageref*{related_pages} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} One can turn [[monads]] into [[adjunctions]] and adjunctions into monads, but one doesn't always return where one started. Every monad comes from an adjunction, but only a \emph{monadic adjunction} comes from a monad via a [[monadic functor]]. (To be fair, there are two ways to turn a monad into an adjunction, given by the [[Kleisli category]] and the [[Eilenberg–Moore category]]; we are talking about the latter here.) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We give the definitions in [[Cat]] and leave it to future readers and writers to generalise. See for instance (\hyperlink{RiehlVerity13}{Riehl-Verity 13}). Let $(C,D,\ell,r,\iota,\epsilon)$ be an adjunction in $Cat$; that is, $\ell: C \to D$ and $r: D \to C$ are [[adjoint functors]] with $\ell \dashv r$, where $\iota$ and $\epsilon$ are the unit and counit. Let $T$ be $r \circ \ell$; $T$ has the structure of a monad on $C$, so consider the [[Eilenberg–Moore category]] $C^T$ of [[module for a monad|modules (algebras)]] for $T$. Then $r \circ \epsilon: T \circ r \to r$ endows $r: D \to C$ with a $T$-algebra structure, hence defines a [[functor]] $k: D \to C^T$. The adjunction $\ell \dashv r$ is \textbf{monadic} if this functor $k$ is an [[equivalence of categories]]. \hypertarget{becks_monadicity_theorem}{}\subsection*{{Beck's monadicity theorem}}\label{becks_monadicity_theorem} \textbf{Beck's Monadicity Theorem} gives a necessary and sufficient condition for an adjunction to be monadic. Namely, the adjunction $(C,D,\ell,r,\iota,\epsilon)$ is monadic iff: \begin{itemize}% \item $r$ reflects isomorphisms; and \item $D$ has coequalizers of $r$-split coequalizer pairs, and $r$ preserves those coequalizers. \end{itemize} See [[monadicity theorem]] for more details and variants. \hypertarget{algebraic_categories}{}\subsection*{{Algebraic categories}}\label{algebraic_categories} The typical categories studied in [[algebra]], such as [[Grp]], [[Ring]], etc, all come equipped with monadic adjunctions from [[Set]]. Specifically, the [[right adjoint]] is the [[forgetful functor]] from algebras to sets, and the [[left adjoint]] maps each set to the [[free object|free]] algebra on that set. Their composite (a monad on $Set$) may be thought of as mapping a set $A$ to the set of words with alphabet taken from $A$ and the connections between letters taken from the appropriate algebraic operations, with two words identified if they can be proved equal by the appropriate algebraic axioms. Abstractly, one may \emph{define} an [[algebraic category]] to be a category equipped with a monadic adjunction from $Set$. However, there are now more examples than the ones from algebra; the best known of these is the category of [[compact Hausdorff spaces]], which corresponds to the [[ultrafilter]] monad. (This result relies on the [[ultrafilter principle]], regardless of whether one interprets `space' here as referring to [[topological spaces]] or [[locales]].) \hypertarget{semanticsstructure_adjunction}{}\subsection*{{Semantics-structure adjunction}}\label{semanticsstructure_adjunction} The relationship between monads and adjunctions itself constitutes an adjunction called the \textbf{semantics-structure adjunction}. Explicitly, for a category $C$ there exist functors $Str:Cat_{/C}^*\to Mon(C):Sem$ with $Str\dashv Sem$ where $Cat_{/C}^*$ denotes the full subcategory of $Cat_{/C}$ consisting of functors admitting a codensity monad; $Str$ sends a functor to its corresponding codensity monad and $Sem$ sends a monad to the forgetful functor from its E-M category to $C$. Intuitively speaking we may think of a monad as a kind of structure with which the objects of $\mathcal{C}$ can be equipped presented in a syntax-independent way, and we may think of the E-M category of a monad (viewed as a syntax independent presentation of an equational theory) as the category of models of this theory, which is often referred to by logicians as the semantics of the theory. For more on this, see for instance section 5 of (\hyperlink{DanielSchäppi1}{Schäppi 2009}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{enumerate}% \item [[Eilenberg-Moore categories]] are obviously all examples, and up to equivalence, the only examples. \item If the categories are pre-orders, then a monadic adjunction is a [[Galois connection]] where the right adjoint reflects ordering and dually a comonadic adjunction is a Galois connection where the left adjoint reflects ordering. \item More generally an [[idempotent adjunction]] is monadic if and only if the right adjoint is [[fully faithful]], i.e. essentially a [[reflective subcategory]] inclusion. Dually, a comonadic idempotent adjunction is essentially a [[coreflective]] subcategory inclusion. \end{enumerate} \hypertarget{related_pages}{}\subsection*{{Related pages}}\label{related_pages} \begin{itemize}% \item [[monadic functor]] \item [[monadic decomposition]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Michael Barr]] and [[Charles Wells]], \emph{Toposes, Triples and Theories} (\href{http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html}{online}) \end{itemize} Discussion for [[quasi-categories]] is around definition 6.1.15 and definition 7.1.6 in \begin{itemize}% \item [[Emily Riehl]], [[Dominic Verity]], \emph{Homotopy coherent adjunctions and the formal theory of monads} (\href{http://arxiv.org/abs/1310.8279}{arXiv:1310.8279}) \item Daniel Schäppi, \emph{Tannaka duality for comonoids in cosmoi} (\href{https://arxiv.org/abs/0911.0977}{arXiv:0911.0977}) \item Alec Rhea (\href{https://mathoverflow.net/users/92164/alec-rhea}{MO user page}), \emph{Semantics-structure adjunction}, URL (version: 2019-01-13): \href{https://mathoverflow.net/q/320698}{https\char58\char47\char47mathoverflow\char46net\char47q\char47\char51\char50\char48\char54\char57\char56} \end{itemize} [[!redirects semantics-structure adjunction]] [[!redirects structure-semantics adjunction]] [[!redirects monadic adjunctions]] \end{document}