\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{monadic descent} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{DescentForTheCodomainFibration}{Descent for the codomain fibration}\dotfill \pageref*{DescentForTheCodomainFibration} \linebreak \noindent\hyperlink{ForCodomainFibs}{Monadic descent of bundles}\dotfill \pageref*{ForCodomainFibs} \linebreak \noindent\hyperlink{motivation_failure_of_pushforward_for_principal_bundles}{Motivation: failure of push-forward for principal bundles}\dotfill \pageref*{motivation_failure_of_pushforward_for_principal_bundles} \linebreak \noindent\hyperlink{the_monad}{The monad}\dotfill \pageref*{the_monad} \linebreak \noindent\hyperlink{the_algebras_over_the_monad_geometric_descent_data}{The algebras over the monad: geometric descent data}\dotfill \pageref*{the_algebras_over_the_monad_geometric_descent_data} \linebreak \noindent\hyperlink{AlongPrincipalBundle}{Monadic descent \emph{along} principal bundles}\dotfill \pageref*{AlongPrincipalBundle} \linebreak \noindent\hyperlink{idea_2}{Idea}\dotfill \pageref*{idea_2} \linebreak \noindent\hyperlink{setup}{Setup}\dotfill \pageref*{setup} \linebreak \noindent\hyperlink{the_two_different_monads}{The two different monads}\dotfill \pageref*{the_two_different_monads} \linebreak \noindent\hyperlink{monadic_descent_of_modules}{Monadic descent of modules}\dotfill \pageref*{monadic_descent_of_modules} \linebreak \noindent\hyperlink{gluing_categories_from_localizations}{Gluing categories from localizations}\dotfill \pageref*{gluing_categories_from_localizations} \linebreak \noindent\hyperlink{higher_category_theoretical_version}{Higher category theoretical version}\dotfill \pageref*{higher_category_theoretical_version} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Monadic descent is a way to encode [[descent]] of [[fibered category|fibered categories]] (equivalently, by the [[Grothendieck construction]], of [[pseudofunctor]]s) that have the special property that they are [[bifibration]]s. This allows to use algebraic tools, notably [[monad]]s and related structures from [[universal algebra]]: a [[bifibration]] $E \to B$ comes naturally equipped not only with a notion of pullback, but also of pushforward. Combined these provide pull-push-[[monad]]s that may be used to encode the [[descent]] property of the fibration. A morphism $f : b_1 \to b_2$ in the base $B$ induces an [[adjunction]] $F\dashv U$ where \begin{displaymath} F \;:\; E_{b_1} =: A\leftrightarrow B := E_{b_2} \;:\; U \end{displaymath} and we ask whether $U$ is a [[monadic functor]]. This is the original description of [[descent]] of presheaves with values in 1-categories due to [[Alexander Grothendieck]]. The archetypical and motivating example is that of the bifibration $Mod \to Ring$ of [[module]]s over [[Ring]]s. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} Let $\mathcal{C}$ be a [[category]] and $\mathcal{C}_{(-)}$ a [[bifibration]] over it. For $f \colon X \longrightarrow Y$ a [[morphism]] in $\mathcal{C}$ write \begin{displaymath} (f_! \dashv f^\ast \dashv f_\ast) \colon \mathcal{C}_X \stackrel{\overset{f_!}{\longrightarrow}}{\stackrel{\overset{f^\ast}{\longleftarrow}}{\underset{f_\ast}{\longrightarrow}}} \mathcal{C}_Y \end{displaymath} for the corresponding [[base change]] [[adjoint triple]], and write \begin{displaymath} (T_f \dashv J_f) \coloneqq (f^\ast f_! \dashv f^\ast f_\ast) \end{displaymath} for the induced [[adjoint pair]] of a [[monad]] $T$ and a [[comonad]] $J$. There is a standard definition of a [[category]] $Desc_{\mathcal{C}}(f)$ of [[descent data]] for $\mathcal{C}_{(-)}$ along $f$, which comes with a canonical morphism \begin{displaymath} \mathcal{C}_{Y} \longrightarrow Desc_{\mathcal{C}}(f) \,. \end{displaymath} The morphism $f$ is called (with respect to the given bifibration $\mathcal{C}_{(-)}$) \begin{itemize}% \item a \emph{descent morphism} if this comparison map is a [[full and faithful functor]]; \item an \emph{effective descent morphism} if the comparison map is an [[equivalence of categories]]. \end{itemize} Now the [[Benabou–Roubaud theorem]] states that if $\mathcal{C}_{(-)}$ satisfies the [[Beck-Chevalley condition]], then descent data is equivalent to the structure of an [[algebra over a monad]] for $T_f$ (equivalently a coalgebra for $J_f$), hence is the [[Eilenberg-Moore category]] for these (co-)monads \begin{displaymath} Desc_{\mathcal{C}}(f) \simeq EM(T_f) \,. \end{displaymath} Therefore when $\mathcal{C}_{(-)}$ satisfies the BC condition, then a morphism $f$ \emph{is effective descent} precisely if $f^\ast \colon \mathcal{C}_{Y} \to \mathcal{C}_{X}$ is [[monadic]], and \emph{is descent} precisely if $f^\ast$ is of [[descent type]]. This is the monadic formulation of descent theory, ``monadic descent''. (e.g. \hyperlink{JanelidzeTholen94}{Janelidze-Tholen 94, pp. 247-248 (3-4 of 37)}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The main theorem is Beck's [[monadicity theorem]]. Given a Grothendieck [[bifibration]] $p:E\to B$ and a morphism $f:b\to b'$ in the base category $B$, one can choose a [[direct image]] $f_!:E_b\to E_{b'}$ and an [[inverse image]] functor $f^*:E_{b'}\to E_b$, which form an [[adjunction]] $f_!\dashv f^*$. Under some conditions (see the [[Bénabou?Roubaud theorem]]), the morphism $f$ is an [[effective descent morphism]] (with respect to $p$ as a [[fibered category]]) iff the comparison functor for the [[monad]] induced by the adjunction $f_!\dashv f^*$ is monadic. We should now see that some instances of categories of [[descent]] data are canonically equivalent to and can be reexpressed via [[Eilenberg-Moore category|Eilenberg?Moore categories]] of monads, or dually comonads. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{DescentForTheCodomainFibration}{}\subsubsection*{{Descent for the codomain fibration}}\label{DescentForTheCodomainFibration} Let $\mathcal{C}$ be a [[locally Cartesian closed category]] with [[coequalizers]] (e.g. a [[topos]]). Then effective descent morphisms for the [[codomain fibration]] are precisely the [[regular epimorphisms]]. (\hyperlink{JanelidzeTholen94}{Janelidze-Tholen 94, 2.4}). Hence for $f \colon X \longrightarrow Y$ any morphism in $\mathcal{C}$ and \begin{displaymath} (f_! \dashv f^\ast \dashv f_\ast) \colon \mathcal{C}_{/X} \longrightarrow \mathcal{C}_{/Y} \end{displaymath} the induced [[base change]] [[adjoint triple]], then $\mathcal{C}_{/Y}$ is equivalent to the [[Eilenberg-Moore category]] of algebras over $f^\ast f_!$ (equivalently: of coalgebras of $f^\ast f_\ast$) precisely if $f$ is an [[effective epimorphism]]. (Use \href{conservative+functor#PullbackAlongEpimorphisms}{conservative pullback along epimorphisms} in the [[monadicity theorem]].) \hypertarget{ForCodomainFibs}{}\subsubsection*{{Monadic descent of bundles}}\label{ForCodomainFibs} One of the most basic examples of [[bifibration]]s are [[codomain fibration]]s $cod : [I,C] \to C$. Accordingly, monadic descent applied to codomain fibrations archetypically exhibits the nature of monadic descent. We therefore spell out this example is some detail. An object in a [[codomain fibration]] over $Y \in C$ is a morphism $P \to Y$, hence a [[bundle]] in $C$, in the most general sense of bundle. Therefore monadic descent with respect to codomain fibrations encodes [[descent]] of bundles. Other examples of monadic descent often find a useful interpretation when relating them back to monadic descent for codomain fibrations. For instance (co)monadic descent for [[Sweedler coring]]s, discussed below, finds a natural geometric interpretion this way (as discussed in detail there). We show in the following that for $cod : [I,C] \to C$ a [[codomain fibration]] and for $\pi : Y\to X$ a morphism in $C$, an algebra object in $[I,C]_Y$ over the [[monad]] $f^* f_*$ encodes and is encoded by a ``geometric'' [[descent]] datum: that it is \begin{itemize}% \item a morphism $P \to Y$ \item equipped with a transition function between its two pullbacks to double $Y \times_X Y$ \item which satisfies on $Y \times_X Y \times_X Y$ the usual cocycle condition. \end{itemize} \hypertarget{motivation_failure_of_pushforward_for_principal_bundles}{}\paragraph*{{Motivation: failure of push-forward for principal bundles}}\label{motivation_failure_of_pushforward_for_principal_bundles} Monadic methods can be applied to the study of descent of structures that cannot only be pulled back, such as [[principal bundle]]s, but that can also be pushed forward, such as [[vector bundle]]s (with suitable care taken) or more generally [[module]]s over functions rings (discussed at [[Sweedler coring]]). Given a [[principal bundle]] $P \to X$ (a topological one, say, i.e. a morphism in [[Top]]) and a morphism of base spaces $f : X \to Z$, the would-be candidate for the push-forward of $P$ along $f$ is simply the composite map $P \to X \to Z$, regarded as a total space $P \to Z$ living over $Z$. While that always exists as such, it will in general not be a principal bundle anymore: the [[fiber]]s of $P \to Z$ over points $z \in Z$ consist of many copies of the fibers of $P \to X$ over points in $X$. Hence the shape of the fibers may change drastically as we push bundles forward. So principal bundles do have a canonical notion of push-forward, but it leads outside the category of principal bundles and lands generally in some [[overcategory]]. On the other hand, as we will see in detail below, if we take a principal bundle $P \to X$ and \begin{itemize}% \item first push it forward in this generalized sense to an object $P \to Z$ in the [[overcategory]] $Top/Z$ \item and \textbf{then} pull back the result of that again along $X \to Z$ the result, while still not a principal bundle, is the total space $P$ of the bundle pulled back to the first term in the [[?ech nerve]] of $f : X \to Z$. This pullback is of central interest in the description of the geometric [[descent]] property of the bundle. \end{itemize} But the composite operation of pushforward of overcategories \begin{displaymath} push(f) : Top/X \to Top/Z \end{displaymath} followed by pullback \begin{displaymath} pull(f) : Top/Z \to Top/X \end{displaymath} is nothing but the [[monad]] associated to $f : X \to Z$ with respect to the [[codomain fibration|codomain bifibration]] $cod : [I,Top] \to Top$. So by regarding principal bundles $P \to X$ more generally as just objects in the [[overcategory]] $Top/X$ we make the tools of monadic descent applicable to them. \hypertarget{the_monad}{}\paragraph*{{The monad}}\label{the_monad} Let $C$ be a [[category]] with [[pullback]]s. Then the [[codomain fibration]] \begin{displaymath} cod : [I,C] \to C \end{displaymath} is a [[bifibration]] (as described there, in detail). Its [[fiber]] over an object $X \in C$ is the [[overcategory]] $C/X$. The direct image operation $push(f)$ associated to a morphism $\pi : Y \to X$ in $C$ is the functor \begin{displaymath} push(\pi) : C/Y \to C/X \end{displaymath} obtained by postcomposition with $f$, which sends $(P \to Y) \in C/Y$ to the composite $P \to Y \stackrel{\pi}{\to} X$ in $C$, regarded as an object of $C/X$. The inverse image operation $pull(f)$ associated to $f$ is the functor \begin{displaymath} C/Y \leftarrow C/X : pull(\pi) \end{displaymath} obtained by [[pullback]] in $C$ along $\pi$, which sends $(Q \to X) \in C/X$ the [[pullback]] $Q \times_X Y$, regarded as an object of $C/Y$ in terms of the canonical projection morphism $Q \times_X Y\to Y$ out of the pullback. Write \begin{displaymath} T_\pi = pull(\pi) \circ push(\pi) : C/Y \to C/Y \end{displaymath} for the [[monad]] built from these two [[adjoint functor]]s. \hypertarget{the_algebras_over_the_monad_geometric_descent_data}{}\paragraph*{{The algebras over the monad: geometric descent data}}\label{the_algebras_over_the_monad_geometric_descent_data} We spell out in detail the data of an algebra over the above monad, and show that this encodes precisely the familiar geometric [[descent]] datum for a [[bundle]]. To that end, let $(P, \rho)$ \begin{displaymath} P : {*} \to C/Y \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \itexarray{ && C/Y \\ & {}^{\mathllap{P}} \nearrow &\Downarrow^{\rho}& \searrow^{\mathrlap{T}} \\ {*} &&\stackrel{P}{\to}&& C/Y } \end{displaymath} be an [[monad|algebra over]] our monad. In components this is an object $T P$ equipped with a morphism $\rho_P : T P \to P$. The object $T P \in [I,C]_Y$ is given by \begin{itemize}% \item first pushing $P \to Y$ forward along $\pi : Y \to X$ to the object $P \to Y \to X$. \item then pulling this back along $\pi$ to yield the left vertical morphism in \begin{displaymath} \itexarray{ Y \times_X P &\to& P \\ \downarrow && \downarrow \\ && Y \\ \downarrow && \downarrow^{\mathrlap{\pi}} \\ Y &\stackrel{\pi}{\to}& X } \,. \end{displaymath} This [[pullback]] along a composite of morphisms may be computed as two consecutive pullbacks. The first one is \begin{displaymath} \itexarray{ Y \times_X Y &\to& Y \\ \downarrow && \downarrow^{\mathrlap{\pi}} \\ Y &\stackrel{\pi}{\to}& X } \end{displaymath} which is the first term in the [[?ech nerve]] of $\pi$. So the total pullback is the pullback $P$ to $Y\times_X Y$: \begin{displaymath} \itexarray{ (Y \times_X Y) \times_Y P &\to& P \\ \downarrow && \downarrow \\ Y \times_X Y &\to& Y \\ \downarrow && \downarrow^{\mathrlap{\pi}} \\ Y &\stackrel{\pi}{\to}& X } \,. \end{displaymath} \end{itemize} Therefore the action $\rho_T : T P \to P$ of our [[monad]] on $P$ is given in $C$ by a morphism \begin{displaymath} \itexarray{ (Y \times_X Y) \times_Y P &&\stackrel{\rho}{\to}&& P \\ & \searrow && \swarrow \\ && Y } \,. \end{displaymath} As an example, think of this in the context $C = Top$ with $\pi \colon Y \to X$ coming from an open [[cover]] $\{U_i \to X\}$ of $X$ with $Y = \coprod_i U_i$, and with $P = Y \times G$ a trivial $G$-[[principal bundle]] for some [[group]] $G$. Then the space $Y \times_X Y = \coprod_{i j} U_i \cap U_j$ is the union of double intersection of covering patches, and $(Y \times_X Y) \times_Y P = (\coprod_{i j} U_i \cap U_j \times G)$ is to be thought of as the trivial $G$-principal bundle over $U_j$, restricted to the intersection. In this case our morphism $\rho$ acts as \begin{displaymath} \rho : \coprod_{i j} : (U_i \cap U_j \times G) \to \coprod_i U_i \times G \end{displaymath} and thus maps the trivial $G$-bundle over $U_j$ on the intersection with the trivial $G$-bundle over $U_i$. So it is a \emph{transition function}. If this is a $G$-equivariant, it may be part of the [[descent]] datum for the $G$-[[principal bundle]]. \hypertarget{AlongPrincipalBundle}{}\subsubsection*{{Monadic descent \emph{along} principal bundles}}\label{AlongPrincipalBundle} \hypertarget{idea_2}{}\paragraph*{{Idea}}\label{idea_2} In the \hyperlink{ForCodomainFibs}{above section} we considered monadic descent \emph{of} [[bundle]]s $P \to Y$ \emph{along} morphisms $f : Y \to X$. Now we consider monadic descent \emph{along} morphisms $f : P \to X$ that happen to be $G$-[[principal bundle]]s, for some [[group object]] $G$. When considered with respect to the [[codomain fibration]] this describes the situation where we ask for a bundle $L \to P$ that sits over the total space of another (principal) bundle to descend down along that bundle map to $X$. So beware of the two different roles that bundles play here. \hypertarget{setup}{}\paragraph*{{Setup}}\label{setup} Let $C$ be a [[category]] with [[pullback]]s and let $G$ be an internal group in $C$. Let $\nu: P\times G\to P$ be a right principal [[action]] and $p:P\times G\to P$ the projection. Let $\pi:P\to X$ be the [[coequalizer]] of $\nu$ and $p$. The [[principal bundle|principality condition]] says that $P\times G \to P\times_X P$ given by $(p,g)\mapsto (p,pg)$ is an [[isomorphism]]. \begin{displaymath} P\times G \overset{\nu}\underset{p}\rightrightarrows P \overset{\pi}\to X \end{displaymath} We do not assume $P$ to be trivial. We have also the two projections \begin{displaymath} P\times_X P \overset{p_1}\underset{p_2}\rightrightarrows P \overset{\pi}\to X \end{displaymath} out of the [[pullback]], where $p_1,p_2$ make a [[kernel pair]] of $\pi$. Thus the principality condition is equivalent to saying that $\nu,p$ make also a [[kernel pair]] of its own [[coequalizer]]. The two diagrams above are truncations of augmented [[simplicial object]]s in $C$. We want to relate these objects to [[monad]]s. \hypertarget{the_two_different_monads}{}\paragraph*{{The two different monads}}\label{the_two_different_monads} We now describe the monadic descent along the morphism $\pi : P \to X$ from above for the [[codomain fibration]] $cod : [I,C] \to C$. There are two monads acting on the [[overcategory]] $C/P$ whose underlying functors are \begin{enumerate}% \item $T := \pi^* \pi_!$. \item $\tilde T := p_! \nu^*$ \end{enumerate} The first monad, $T$ is the usual one for monadic descent along $\pi$ induced from a pair of [[adjoint functor]]s. The second one, $\tilde T$, exists due to the principality of $P \to X$ and is defined as follows: to construct the component $\mu_h$ of the transformation $\mu: p_! \nu^* p_!\nu^*\to p_!\nu^*$ where $h: L\to P$, by the universal property of the pullback there is an obvious map $\nu^* p_! \nu^* h$ to $p_! \nu^* h$ \begin{displaymath} \itexarray{ \nu^* p_! \nu^* L \\ & \searrow^{\mathrlap{\mu_h}} \\ &&\nu^* L &\to& L \\ && \downarrow && \downarrow \\ && P &\stackrel{\stackrel{p}{\to}}{\underset{\to}{\nu}}& X } \,, \end{displaymath} which can be interpreted as a map $p_!\nu^* p_! \nu^* h\to p_* \nu^* h$ because the domains of the maps $p_!\nu^* p_! \nu^* h$ and $\nu^* p_! \nu^* h$ are the same by the definition and the commuting triangles can be checked easily. The [[principal bundle|principality]] $P\times G \cong P\times_X P$ now induces the [[isomorphism]] \begin{displaymath} p_! \nu^* h \cong \pi^* \pi_! h \end{displaymath} [[natural isomorphism|natural]] in $h:L\to P$, read off from the double [[pullback]] diagram \begin{displaymath} \itexarray{ p_! \nu^* L &\stackrel{\simeq}{\to}& \pi^* \pi_! L &\to& L \\ \downarrow && \downarrow && \downarrow^{\mathrlap{h}} \\ P \times G &\stackrel{\simeq}{\to}& P \times_X P &\to& P \\ && \downarrow && \downarrow^{\mathrlap{\pi}} \\ && P &\to& X } \,. \end{displaymath} This rule extends to an isomorphism of monads \begin{displaymath} T \simeq \tilde T \,. \end{displaymath} As a corollary, the [[Eilenberg-Moore category|Eilenberg-Moore categories]] of the two monads are [[equivalence of categories|equivalent]]. Notice that the actions over the monad $p_! \nu^*$ are certain maps $p_!\nu^*h\to h$, hence $\nu^* h\to p^* h$ by adjointness. This matches one of the definitions for an [[equivariant sheaf]]. The map $\pi : P\to X$ of the principal bundle is an \textbf{[[effective descent morphism]]} with respect to the [[codomain fibration]] if the comparison functor for any of the two above isomorphic monads above is an equivalence of categories. \hypertarget{monadic_descent_of_modules}{}\subsubsection*{{Monadic descent of modules}}\label{monadic_descent_of_modules} There is a [[bifibration]] $Mod \to Rings$ from the category of modules over any ring, mapping each module to the ring that it is a module over. This models, dually, an algebraic version of [[vector bundle]]s over [[affine scheme]]s. Comonadic descent for this bifibration (equivalently monadic descent for its formal dual, $Mod^{op} \to Rings^{op}$) is the same as descent for a [[Sweedler coring]]. See there for details and geometric interpretations. \hypertarget{gluing_categories_from_localizations}{}\subsubsection*{{Gluing categories from localizations}}\label{gluing_categories_from_localizations} Another example is in [[zoranskoda:gluing categories from localizations|gluing categories from localizations]]. \hypertarget{higher_category_theoretical_version}{}\subsection*{{Higher category theoretical version}}\label{higher_category_theoretical_version} All the ingredients of monadic descent generalize from [[category theory]] to [[higher category theory]]. Accordingly, one may consider [[higher monadic descent]] that relates to [[∞-stack]]s as monadic descent relates to [[stack]]s. For more on this see \begin{itemize}% \item [[higher monadic descent]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[surjective geometric morphism]] \item [[descent]] \begin{itemize}% \item [[cover]] \item [[cohomological descent]] \item [[descent morphism]] \item \textbf{monadic descent} \begin{itemize}% \item [[Sweedler coring]] \item [[higher monadic descent]] \item [[descent in noncommutative algebraic geometry]] \end{itemize} \end{itemize} \item [[sheaf]], [[(2,1)-sheaf]], [[2-sheaf]] [[(∞,1)-sheaf]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The [[Bénabou-Roubaud theorem]] on monadic descent is due to \begin{itemize}% \item [[Jean Bénabou]], [[Jacques Roubaud]], \emph{Monades et descente}, C. R. Acad. Sc. Paris, t. 270 (12 Janvier 1970), Serie A, 96--98, (\href{http://gallica.bnf.fr/ark:/12148/bpt6k480298g/f100}{link}, Biblioth\`e{}que nationale de France) \end{itemize} Review and further developments include \begin{itemize}% \item [[George Janelidze]], [[Walter Tholen]], \emph{Facets of Descent I}, Applied Categorical Structures 1994, Volume 2, Issue 3, pp 245-281 \item [[George Janelidze]], [[Walter Tholen]], \emph{Facets of Descent II}, Applied Categorical Structures September 1997, Volume 5, Issue 3, pp 229-248 \item [[Francis Borceux]], S. Caenepeel, [[George Janelidze]], \emph{Monadic approach to Galois descent and cohomology} (\href{http://arxiv.org/abs/0812.1674}{arXiv:0812.1674}) \end{itemize} Discussion in [[homotopy theory]] for [[(infinity,1)-monads]] is in \begin{itemize}% \item [[Kathryn Hess]], section 2 of \emph{A general framework for homotopic descent and codescent} (\href{http://arxiv.org/abs/1001.1556}{arXiv:1001.1556}) \end{itemize} [[!redirects comonadic descent]] \end{document}