\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{monodromy} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{InPointSetTopology}{In point-set topology}\dotfill \pageref*{InPointSetTopology} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{in_cohesive_toposes}{In cohesive $\infty$-Toposes}\dotfill \pageref*{in_cohesive_toposes} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Monodromy} is the name for the [[action]] of the [[homotopy group (of an ∞-stack)|homotopy groups]] of a [[space]] $X$ on [[fibers]] of [[covering spaces]] or [[locally constant ∞-stacks]] on $X$. \hypertarget{InPointSetTopology}{}\subsection*{{In point-set topology}}\label{InPointSetTopology} We discuss monodromy of [[covering spaces]] in elementary [[point-set topology]]. \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} \begin{defn} \label{CoveringSpaceMonodromy}\hypertarget{CoveringSpaceMonodromy}{} \textbf{(monodromy of a [[covering space]])} Let $X$ be a [[topological space]] and $E \overset{p}{\to} X$ a [[covering space]]. Write $\Pi_1(X)$ for the [[fundamental groupoid]] of $X$. Define a [[functor]] \begin{displaymath} Fib_E \;\colon\; \Pi_1(X) \longrightarrow Set \end{displaymath} to the [[category]] [[Set]] of [[sets]] as follows: \begin{enumerate}% \item to a point $x \in X$ assign the [[fiber]] $p^{-1}(\{x\}) \in Set$; \item to the [[homotopy class]] of a [[path]] $\gamma$ connecting $x \coloneqq \gamma(0)$ with $y \coloneqq \gamma(1)$ in $X$ assign the function $p^{-1}(\{x\}) \longrightarrow p^{-1}(\{y\})$ which takes $\hat x \in p^{-1}(\{x\})$ to the endpoint of a path $\hat \gamma$ in $E$ which lifts $\gamma$ through $p$ with starting point $\hat \gamma(0) = \hat x$ \begin{displaymath} \itexarray{ p^{-1}(x) &\overset{}{\longrightarrow}& p^{-1}(y) \\ (\hat x = \hat \gamma(0)) &\mapsto& \hat \gamma(1) } \,. \end{displaymath} \end{enumerate} This construction is well defined for a given representative $\gamma$ due to the unique path-lifting property of covering spaces (\href{covering+space#CoveringSpacePathLifting}{this lemma}) and it is independent of the choice of $\gamma$ in the given homotopy class of paths due to the homotopy-lifting property (\href{covering+space#CoveringSpacesHomotopyLifting}{this lemma}). Similarly, these two lifting properties give that this construction respects composition in $\Pi_1(X)$ and hence is indeed a [[functor]]. \end{defn} Hence this defines a ``[[permutation representation|permutation]] [[groupoid representation]]'' of $\Pi_1(X)$. \begin{prop} \label{}\hypertarget{}{} Given a [[homomorphism]] between two [[covering spaces]] $E_i \overset{p_i}{\to} X$, hence a [[continuous function]] $f \colon E_1 \to E_2$ which respects [[fibers]] in that the [[diagram]] \begin{displaymath} \itexarray{ E_1 && \overset{f}{\longrightarrow} && E_2 \\ & {}_{\mathllap{p_1}}\searrow && \swarrow_{\mathrlap{p_2}} \\ && X } \end{displaymath} [[commuting diagram|commutes]], then the component functions \begin{displaymath} f\vert_{\{x\}} \;\colon\; p_1^{-1}(\{x\}) \longrightarrow p_2^{-1}(\{x\}) \end{displaymath} are compatible with the monodromy $Fib_{E}$ (def. \ref{CoveringSpaceMonodromy}) along any [[path]] $\gamma$ between points $x$ and $y$ from def. \ref{CoveringSpaceMonodromy} in that the following [[diagrams]] of [[sets]] [[commuting diagram|commute]] \begin{displaymath} \itexarray{ p_1^{-1}(x) &\overset{f\vert_{\{x\}}}{\longrightarrow}& p_2^{-1}(x) \\ {}^{\mathllap{Fib_{E_1}([\gamma])}}\downarrow && \downarrow^{\mathrlap{ Fib_{E_2}([\gamma]) }} \\ p_1^{-1}(y) &\underset{f\vert_{\{y\}}}{\longrightarrow}& p_2^{-1}(\{y\}) } \,. \end{displaymath} This means that $f$ induces a [[natural transformation]] between the monodromy functors of $E_1$ and $E_2$, respectively, and hence that constructing monodromy is itself a functor from the [[category]] of [[covering spaces]] of $X$ to that of [[permutation representations]] of the [[fundamental groupoid]] of $X$: \begin{displaymath} Fib \;\colon\; Cov(X) \longrightarrow Set^{\Pi_1(X)} \,. \end{displaymath} \end{prop} \begin{proof} For any $\hat x \in p_1^{-1}(x)$ let $\hat \gamma$ be the unique path in $E$ with $\hat \gamma(0) = \hat x$ and $p \circ \hat \gamma = \gamma$. By definition \ref{CoveringSpaceMonodromy} we have \begin{displaymath} Fib_{E_1}([\gamma(f)])(\hat x) = \hat \gamma(1) \end{displaymath} and hence \begin{displaymath} f(Fib_{E_1}([\gamma(f)])(\hat x)) = f(\hat \gamma(1)) \end{displaymath} Now $f \circ \hat \gamma$ satisfies $f \circ \hat \gamma(0) = f(\hat x)$ and $p \circ f \circ \hat \gamma = \gamma$ by the fact that $f$ preserves fibers. Hence by uniqueness of path lifting (\href{covering+space#CoveringSpacePathLifting}{this lemma}), $f \circ \hat \gamma$ is the unique lift of $\gamma$ with starting point $f(\hat x)$. By def. \ref{CoveringSpaceMonodromy} this means that \begin{displaymath} Fib_{E_2}([\gamma])(f(\hat x)) = f (\hat \gamma(1)) \,. \end{displaymath} This is the equality to be shown. \end{proof} \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} \begin{remark} \label{}\hypertarget{}{} \textbf{([[fundamental theorem of covering spaces]])} The [[reconstruction of covering spaces from monodromy]] is an [[inverse functor]] to the monodromy functor. The resulting [[equivalence of categories]] \begin{displaymath} Cov(X) \underoverset {\underset{Fib}{\longrightarrow}} {\overset{Rec}{\longleftarrow}} {} Set^{\Pi_1(X)} \end{displaymath} between the [[category of covering spaces]] and the [[permutation representation|permutation]] [[groupoid representations]] of the [[fundamental groupoid]] is known as the \emph{[[fundamental theorem of covering spaces]]}. \end{remark} \begin{example} \label{CoveringSpaceFundamentalGroupoid}\hypertarget{CoveringSpaceFundamentalGroupoid}{} \textbf{([[fundamental groupoid]] of covering space)} Let $E \overset{p}{\longrightarrow} X$ be a covering space. Then the [[fundamental groupoid]] $\Pi_1(E)$ of the total space $E$ is [[equivalence of categories|equivalently]] the [[Grothendieck construction]] of the [[monodromy]] functor $Fib_E \;\colon\; \Pi_1(X) \to Set$ \begin{displaymath} \Pi_1(E) \;\simeq\; \int_{\Pi_1(X)} Fib_E \end{displaymath} whose \begin{itemize}% \item [[objects]] are pairs $(x,\hat x)$ consisting of a point $x \in X$ and en element $\hat x \in Fib_E(x)$; \item [[morphisms]] $[\hat \gamma] \colon (x,\hat x) \to (x', \hat x')$ are morphisms $[\gamma] \colon x \to x'$ in $\Pi_1(X)$ such that $Fib_E([\gamma])(\hat x) = \hat x'$. \end{itemize} \end{example} \begin{proof} By the uniqueness of the path-lifting (\href{covering+space#CoveringSpacePathLifting}{this lemma}) and the very definition of the [[monodromy]] functor. \end{proof} \begin{prop} \label{MonodromyConnectednessOfCoveringSpace}\hypertarget{MonodromyConnectednessOfCoveringSpace}{} Let $X$ be a [[path-connected topological space]] and let $E \overset{p}{\to} X$ be a [[covering space]]. Then the total space $E$ is \begin{enumerate}% \item [[path-connected topological space|path-connected]] precisely if the [[monodromy]] $Fib_E$ is a [[transitive action]]; \item [[simply connected topological space|simply connected]] precisely if the [[monodromy]] $Fib_E$ is [[free action]]. \end{enumerate} \end{prop} \begin{proof} By example \ref{CoveringSpaceFundamentalGroupoid}. \end{proof} \hypertarget{in_cohesive_toposes}{}\subsection*{{In cohesive $\infty$-Toposes}}\label{in_cohesive_toposes} Let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]] and $X \in \mathbf{H}$ any object. Then the [[locally constant ∞-stacks]] on $X$ are represented by morphisms $X \to LConst Core(\infty Grpd)$. By adjunction such morphisms are equivalent to [[(∞,1)-functors]] $\Pi(X) \to Core(\infty Grpd)$ This morphism exhibits the \textbf{monodromy} of the [[locally constant ∞-stack]]. Specifically, the restriction $\mathbf{B}\Omega_x \Pi(X) \hookrightarrow \Pi(X) \to \infty Grpd$ to the [[delooping]] $\mathbf{B}\Omega_x \Pi(X)$ of the [[loop space object]] $\Omega_x \Pi(X)$ at a chosen baspoint $x : {*} \to X$ is the \textbf{monodromy [[action]]} of loops based at $x \in X$ on the fiber of the locally constant $\infty$-stack over $x$. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[eom]], \emph{\href{http://eom.springer.de/m/m064700.htm}{Monodromy transformation}} \end{itemize} [[!redirects monodromies]] \end{document}