\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{monoid in a monoidal category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{morphism_of_monoids}{Morphism of monoids}\dotfill \pageref*{morphism_of_monoids} \linebreak \noindent\hyperlink{as_categories_with_one_object}{As categories with one object}\dotfill \pageref*{as_categories_with_one_object} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{preservation_by_lax_monoidal_functors}{Preservation by lax monoidal functors}\dotfill \pageref*{preservation_by_lax_monoidal_functors} \linebreak \noindent\hyperlink{category_of_monoids}{Category of monoids}\dotfill \pageref*{category_of_monoids} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Generalizing the classical notion of [[monoid]], one can define a \emph{monoid} (or \emph{monoid object}) in any [[monoidal category]] $(C,\otimes,I)$. Classical monoids are of course just monoids in [[Set]] with the [[cartesian product]]. By the [[microcosm principle]], in order to define monoid objects in $C$, $C$ itself must be a ``categorified monoid'' in some way. The natural requirement is that it be a [[monoidal category]]. In fact, it suffices if $C$ is a [[multicategory]]. Contrast this with a [[group object]], which can only be defined in a [[cartesian monoidal category]] (or a [[cartesian multicategory]]). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Namely, a \textbf{monoid in $C$} is an object $M$ equipped with a multiplication $\mu: M \otimes M \to M$ and a unit $\eta: I \to M$ satisfying the \textbf{associative law}: \begin{displaymath} \itexarray{ & (M \otimes M) \otimes M & \stackrel{\alpha}{\longrightarrow} & M \otimes (M \otimes M) & \stackrel{1 \otimes \mu}{\longrightarrow} & M \otimes M \\ & {}_{\mu \otimes 1}\searrow && && \swarrow_{\mu} & \\ && M \otimes M & \stackrel{\mu}{\longrightarrow} M && } \end{displaymath} and the \textbf{left and right unit laws}: \begin{displaymath} \itexarray{ & I \otimes M & \stackrel{\eta \otimes 1}{\longrightarrow} & M \otimes M & \stackrel{1 \otimes \eta}{\longleftarrow} & M \otimes I \\ & & {}_{\lambda}\searrow & {}_{\mu}\downarrow & \swarrow_{\rho} & \\ & & & M & & } \end{displaymath} Here $\alpha$ is the [[associator]] in $C$, while $\lambda$ and $\rho$ are the left and right [[unitor|unitors]]. \hypertarget{morphism_of_monoids}{}\subsection*{{Morphism of monoids}}\label{morphism_of_monoids} The analogue of a monoid homomorphism, called a morphism of monoids, is a morphism, $\f: M \to M'$ between two monoid objects, satisfying the equations; $f \circ \mu = \mu' \circ (f \otimes f)$ $f \circ \eta = \eta'$ corresponding to the commutative diagrams; \begin{displaymath} \itexarray{ & M \otimes M & \stackrel{f \otimes f}{\longrightarrow} & M' \otimes M' \\ & {}_{\mu}\downarrow & & \downarrow_{\mu'} \\ & M & \stackrel{f}{\longrightarrow} & M' } \end{displaymath} \begin{displaymath} \itexarray{ & I & \stackrel{\eta}{\longrightarrow} & M \\ & & {}_{\eta'}\searrow & \downarrow_{f} \\ & & & M' } \end{displaymath} \hypertarget{as_categories_with_one_object}{}\subsection*{{As categories with one object}}\label{as_categories_with_one_object} Just as the category of regular [[monoid|monoids]] is equivalent to the category of locally small (i.e. Set-enriched) categories with one object, the category of monoids in $C$ (with the obvious morphisms) is equivalent to the category of $C$-[[enriched category|enriched categories]] with one object. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{preservation_by_lax_monoidal_functors}{}\subsubsection*{{Preservation by lax monoidal functors}}\label{preservation_by_lax_monoidal_functors} Monoid structure is preserved by [[lax monoidal functor]]s. Comonoid structure by [[oplax monoidal functor]]s. See there for more. \hypertarget{category_of_monoids}{}\subsubsection*{{Category of monoids}}\label{category_of_monoids} For special properties of categories of monoids, see [[category of monoids]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item A monoid object in [[Ab]] (with the usual tensor product of $\mathbb{Z}$-modules as the tensor product) is a [[ring]]. A monoid object in the category of vector spaces over a field $k$ (with the usual tensor product of vector spaces) is an [[algebra]] over $k$. \item A monoid in a [[category of modules]] is an [[associative unital algebra]]. \item A monoid object in [[Top]] (with cartesian product as the tensor product) is a [[topological monoid]]. \item A monoid object in [[Ho(Top)]] is an [[H-monoid]]. \item A monoid object in the category of monoids (with cartesian product as the tensor product) is a [[commutative monoid]]. This is a version of the [[Eckmann-Hilton argument]]. \item A monoid object in the category of complete join-[[semilattice]]s (with its tensor product that represents maps preserving joins in each variable separately) is a unital [[quantale]]. \item Given any monoidal category $C$, a monoid in the monoidal category $C^{op}$ is called a [[comonoid]] in $C$. \item In a [[cocartesian monoidal category]], every object is a monoid object in a unique way. \item For any category $C$, the [[endofunctor]] category $C^C$ has a monoidal structure induced by composition of endofunctors, and a monoid object in $C^C$ is a [[monad]] on $C$. \end{itemize} These are examples of monoids internal to monoidal categories. More generally, given any [[bicategory]] $B$ and a chosen object $a$, the [[hom-category]] $B(a,a)$ has the structure of a monoidal category. So, the concept of monoid makes sense in any [[bicategory]] $B$: we define a \textbf{monoid in $B$} to be a monoid in $B(a,a)$ for some object $a \in B$. This often called a [[monad]] in $B$. The reason is that a monad in [[Cat]] is the same as monad on a category. A monoid in a bicategory $B$ may also be described as the [[hom-object]] of a $B$-[[enriched category]] with a single object. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[monoid]] \item [[commutative monoid in a symmetric monoidal category]] \item [[module over a monoid]] \item [[category of monoids]] \item [[monoid in a monoidal (infinity,1)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Categorical properties of [[monoid objects]] in [[monoidal categories]] are spelled out in sections 1.2 and 1.3 of \begin{itemize}% \item Florian Marty, \emph{Des Ouverts Zariski et des Morphismes Lisses en G\'e{}om\'e{}trie Relative}, Ph.D. Thesis, 2009, \href{http://thesesups.ups-tlse.fr/540/}{web} \end{itemize} A summary is in section 4.1 of \begin{itemize}% \item [[Martin Brandenburg]], \emph{Tensor categorical foundations of algebraic geometry}, \href{http://arxiv.org/abs/1410.1716}{arXiv:1410.1716}. \end{itemize} See also \href{http://mathoverflow.net/questions/180673/category-of-modules-over-commutative-monoid-in-symmetric-monoidal-category}{MO/180673}. [[!redirects monoids in a monoidal category]] [[!redirects monoids in monoidal categories]] [[!redirects monoid object in a monoidal category]] [[!redirects monoid objects in a monoidal category]] [[!redirects monoid objects in monoidal categories]] [[!redirects monoid object]] [[!redirects monoid objects]] [[!redirects internal monoid]] [[!redirects internal monoids]] [[!redirects algebra object]] [[!redirects algebra objects]] \end{document}