\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{monoidal (infinity,1)-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-topos theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{idea_of_the_simplicial_definition}{Idea of the simplicial definition}\dotfill \pageref*{idea_of_the_simplicial_definition} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{plain_monoidal_category}{Plain monoidal $(\infty,1)$-category}\dotfill \pageref*{plain_monoidal_category} \linebreak \noindent\hyperlink{monoidal_category}{$\mathcal{O}$-monoidal $(\infty,1)$-category}\dotfill \pageref*{monoidal_category} \linebreak \noindent\hyperlink{higher_monoidal_structure}{Higher monoidal structure}\dotfill \pageref*{higher_monoidal_structure} \linebreak \noindent\hyperlink{operadicalgebraic_definition_of_monoidal_structure}{Operadic/algebraic definition of monoidal structure}\dotfill \pageref*{operadicalgebraic_definition_of_monoidal_structure} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{monoidal $(\infty,1)$-category} is the analogue of the notion of [[monoidal category]] in the context of [[(infinity,1)-category|(∞,1)-categories]]. There are various ways to state the monoidal structure. One is in terms of fibrations over the [[simplex category]]. This is the approach taken in \begin{itemize}% \item [[Jacob Lurie]], \emph{Noncommutative algebra} (\href{http://arxiv.org/abs/math/0702299}{arXiv}) \end{itemize} Another is in terms of [[(∞,1)-operad]]s (see there). This approach has been taken in (\hyperlink{Francis}{Francis}). Both are described below. Just as many ordinary $(\infty,1)$-categories (particularly, all of those that are [[locally presentable (infinity,1)-category|locally presentable]]) can be presented by [[model categories]], many monoidal $(\infty,1)$-categories can be presented by [[monoidal model categories]]. See for instance \hyperlink{NikolausSagave15}{NikolausSagave15}. \hypertarget{idea_of_the_simplicial_definition}{}\subsubsection*{{Idea of the simplicial definition}}\label{idea_of_the_simplicial_definition} As discussed at the end of the entry on [[monoidal category]], an ordinary [[monoidal category]] may be thought of as a lax functor \begin{displaymath} * \to \mathbf{B} Cat \end{displaymath} from the terminal category to the one-object 3-category whose single [[hom-object]] is the [[2-category]] [[Cat]] of all categories and for which composition is the [[cartesian monoidal category|cartesian monoidal structure]] on [[Cat]]. More concretely, as also described there, such a lax functor is a kind of [[descent]] object in a [[weighted limit]] $lim^{\Delta} const_{\mathbf{B}Cat}$, namely a diagram \begin{displaymath} \itexarray{ F \Delta^4 &\stackrel{=}{\to}& \mathbf{B} Cat \\ \uparrow && \uparrow^{Id} \\ F \Delta^3 &\stackrel{\alpha}{\to}& \mathbf{B} Cat \\ \uparrow && \uparrow^{Id} \\ F \Delta^2 &\stackrel{\otimes}{\to}& \mathbf{B} Cat \\ \uparrow && \uparrow^{Id} \\ F \Delta^1 &\stackrel{C}{\to}& \mathbf{B}Cat \\ \uparrow && \uparrow^{Id} \\ F\Delta^0 &\stackrel{\bullet}{\to}& \mathbf{B}Cat } \end{displaymath} where $F \Delta^n$ is the free 3-category of the $n$-[[simplex]] (an [[oriental]]), where the horizontal morphisms are the chosen data -- the category $C$, product $\otimes$, associator $\alpha$ and, in degree 4, the respect for the pentagon identity -- and the condition is that this commutes for all vertical morphisms $F(\Delta^n \to \Delta^m)$. So this is a 4-functor \begin{displaymath} F(\Delta^4) \to \mathbf{B}Cat \end{displaymath} subject to a certain constraint. Using the general mechanism of [[generalized universal bundle]]s, this classifies a [[Cat]]-bundle \begin{displaymath} \itexarray{ C^\otimes \to F(\Delta^4) } \,. \end{displaymath} With a bit more time than I have on the train one can figure out that conversely suitable such fibrations are equivalent to monoidal categories. Alternatively, one can read pages 5 and 6 of \emph{LurieNonCom} cited below. In any case, this motivates the following definition. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{plain_monoidal_category}{}\subsubsection*{{Plain monoidal $(\infty,1)$-category}}\label{plain_monoidal_category} \begin{defn} \label{}\hypertarget{}{} A \textbf{monoidal ($\infty,1$)-category} $(C, \otimes)$ is \begin{itemize}% \item a [[simplicial set]] $C^\otimes$; \item and a [[coCartesian fibration]] of simplicial sets $p_\otimes : C^\otimes \to N(\Delta)^{op}$ \item such that for each $n \in \mathbb{N}$ the induced [[(infinity,1)-functor]] $C^\otimes_{[n]} \to C^\otimes_{\{i,i+1\}}$ determines an equivalence of [[(infinity,1)-category|(infinity,1)-categories]] \end{itemize} \begin{displaymath} C^\otimes_{[n]} \to C^\otimes_{\{0,1\}} \times \cdots \times C^\otimes_{\{n-1,n\}} \simeq (C^\otimes_{[1]})^n \,. \end{displaymath} Here $\Delta$ is the [[simplex category]] and $N(\Delta)$ its [[nerve]]. \end{defn} \hypertarget{monoidal_category}{}\subsubsection*{{$\mathcal{O}$-monoidal $(\infty,1)$-category}}\label{monoidal_category} The following defines [[symmetric monoidal (∞,1)-categories]] and their variants, where the [[commutative operad]] is replaced by any other [[(∞,1)-operad]]. \begin{defn} \label{}\hypertarget{}{} Let $\mathcal{O}^\otimes$ be an [[(∞,1)-operad]]. A \textbf{[[coCartesian fibration of (∞,1)-operads]]} is \begin{enumerate}% \item a [[coCartesian fibration]] $p : \mathcal{C}^\otimes \to \mathcal{O}^\otimes$ of the underlying [[quasi-categories]]; \item such that the composite \begin{displaymath} \mathcal{C}^\otimes \stackrel{p}{\to} \mathcal{O}^\otimes \to Fin_* = Comm \end{displaymath} exhibits $\mathcal{C}^\otimes$ as an [[(∞,1)-operad]]. \end{enumerate} In this case we say that the underlying [[(∞,1)-category]] \begin{displaymath} \mathcal{C} = \mathcal{C}^\otimes \times_{\mathcal{O}^\otimes} \mathcal{O} \end{displaymath} is equipped by $p$ with the [[structure]] of an \textbf{$\mathcal{O}$-monoidal $(\infty,1)$-category}. \end{defn} This is (\hyperlink{Lurie}{Lurie, def. 2.1.2.13}). \begin{defn} \label{}\hypertarget{}{} For $\mathcal{O}$ = [[commutative operad|Comm]], an $\mathcal{O}$-monoidal $(\infty,1)$-category is a [[symmetric monoidal (∞,1)-category]]. \end{defn} \hypertarget{higher_monoidal_structure}{}\subsection*{{Higher monoidal structure}}\label{higher_monoidal_structure} While for an ordinary [[monoid]] there is just one notion of commutativity (either it is or it is not commutative), already a [[monoidal category]] distinguishes between being just [[braided monoidal category|braided monoidal]] or fully [[symmetric monoidal category|symmetric monoidal]]. This pattern continues, as expressed by the [[k-tuply monoidal n-category|periodic table of k-tuply monoidal categories]]. A [[higher category theory|higher category]] may be a [[k-tuply monoidal n-category]] or more generally [[k-tuply monoidal (n,r)-category]] for different values of $k$. The lowest value of $k= 1$ (since for $k = 0$ there is no monoidal structure at all) corresponds to monoidal product which is $\infty$-associative, i.e. associative up to higher coherent homotopies, but need not have any degree of \emph{commutativity}. One says that an $n$-category is \emph{symmetric monoiodal} if it is ``as monoidal as possible'', i.e. $\infty$-tuply monoidal. In particular, in [[higher algebra|Noncommutative algebra]] and [[higher algebra|Commutative algebra]] we have \begin{itemize}% \item the 1-fold monoidal (∞,1)-categories described here; \item [[symmetric monoidal (infinity,1)-category|∞-tuply monoidal (∞,1)-categories]]. \end{itemize} \hypertarget{operadicalgebraic_definition_of_monoidal_structure}{}\subsubsection*{{Operadic/algebraic definition of monoidal structure}}\label{operadicalgebraic_definition_of_monoidal_structure} For each $1 \leq n \leq \infty$ let $E_n$ denote the [[little n-disk operad|little n-disk]] [[operad]] whose [[topological space]] of $E_n^k$ of $k$-ary operations is the space of embeddings of $k$ $n$-dimensional disks (balls) in one $n$-dimensional disk without intersection, and whose composition operation is the obvious one obtained from gluing the big outer disks into given inner disks. In \hyperlink{Francis}{John Francis' PhD thesis} the theory of [[(∞,1)-categories]] equipped with an action of the $E_n$-[[operad]] is established, so that \begin{itemize}% \item $(\infty,1)$-categories with an $E_1$-action are precisely [[monoidal (∞,1)-categories]] -- 1-fold monoidal $(\infty,1)$-categories; \item $(\infty,1)$-categories with an $E_\infty$-action are precisely [[symmetric monoidal (∞,1)-categories]] -- $\infty$-tuply monoidal $(\infty,1)$-categories; \item $(\infty,1)$-categories with an $E_n$-action for $1 \lt n \lt \infty$ are the corresponding $n$-tuply monoidal $(\infty,1)$-categories in between. \end{itemize} \begin{quote}% \textbf{Remark} The second statement is example 2.3.8 in \hyperlink{Francis}{EnAction}. The first seems to be clear but is maybe not in the literature. Jacob Lurie is currently rewriting [[higher algebra|Higher Algebra]] such as to build in a discussion of $E_n$-operadic structures in the definition of $k$-tuply monoidal $(\infty,1)$-categories. \end{quote} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[monoidal category]], [[monoidal (2,1)-category]], \textbf{monoidal $(\infty,1)$-category} \begin{itemize}% \item [[monoidal (∞,1)-functor]] \item [[Picard ∞-group]] \end{itemize} \item [[braided monoidal category]], [[braided monoidal (∞,1)-category]] \begin{itemize}% \item [[braided ∞-group]] \end{itemize} \item [[symmetric monoidal category]], [[symmetric monoidal (2,1)-category]], [[symmetric monoidal (∞,1)-category]] \begin{itemize}% \item [[abelian ∞-group]] \end{itemize} \item [[closed monoidal category]] , [[closed monoidal (∞,1)-category]] \item [[prime spectrum of a monoidal stable (∞,1)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The simplicial definition for plain monoidal $(\infty,1)$-categories is definition 1.1.2 in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Noncommutative Algebra]]} (\href{http://arxiv.org/abs/math/0702299}{arXiv}) \end{itemize} John Francis' work on [[little cubes operad]]-actions on $(\infty,1)$-categories is in \begin{itemize}% \item [[John Francis]], PhD thesis (\href{http://dspace.mit.edu/handle/1721.1/43792}{web}) \end{itemize} The general notion of an $\mathcal{O}$-monoidal $(\infty,1)$-category is around definition 2.1.2.13 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Algebra]]} . \end{itemize} An introductory survey is in \begin{itemize}% \item [[Moritz Groth]], \emph{A short course on $\infty$-categories} (\href{http://www.math.uni-bonn.de/~mgroth/InfinityCategories.pdf}{pdf}) \end{itemize} A relation to [[monoidal model categories]] (in particular, that every locally presentable symmetric monoidal $(\infty,1)$-category arises from a symmetric monoidal model category) is described in \begin{itemize}% \item [[Thomas Nikolaus]], [[Steffen Sagave]], \emph{Presentably symmetric monoidal infinity-categories are represented by symmetric monoidal model categories}. Algebr. Geom. Topol. 17 (2017), no. 5, 3189--3212. (\href{http://arxiv.org/abs/1506.01475}{arXiv:1506.01475}) \end{itemize} [[!redirects monoidal (infinity,1)-categories]] [[!redirects monoidal (∞,1)-category]] [[!redirects monoidal (∞,1)-categories]] \end{document}