\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{monoidal adjunction} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Details}{Details}\dotfill \pageref*{Details} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{monoidal adjunction} is an [[adjunction]] between [[monoidal categories]] which respects the monoidal structure. Since there are several types of [[monoidal functors]] (lax, colax, and strong) there are several types of ``adjunctions between monoidal categories which respect the monoidal structure.'' Namely, we could have: \begin{itemize}% \item An adjunction in the [[2-category]] [[MonCat]] of [[monoidal categories]] and [[strong monoidal functors]]. In this case both the left and right adjoint are strong. \begin{displaymath} \itexarray{ \underoverset {\underset{R \, \text{strong monoidal}}{\longrightarrow}} {\overset{L \, \text{strong monoidal}}{\longleftarrow}} {} } \end{displaymath} We call this a \textbf{strong monoidal adjunction}. \item An adjunction in the 2-category [[MonCat]]${}_\ell$ of monoidal categories and [[lax monoidal functors]]. In this case the right adjoint is lax, while the left adjoint is necessarily strong (by [[doctrinal adjunction]]; see \href{/nlab/show/doctrinal+adjunction#strength}{here}). \begin{displaymath} \itexarray{ \underoverset {\underset{R \, \text{lax monoidal}}{\longrightarrow}} {\overset{L \, \text{strong monoidal}}{\longleftarrow}} {} } \end{displaymath} In fact, since the [[right adjoint]] of an [[oplax monoidal functor]] is necessarily a [[lax monoidal functor]] (\href{oplax+monoidal+functor#OplaxAdjointToLax}{this prop.}), it is sufficient to demand that $L$ be strong monoidal. This version, which is one of the most frequently occurring, is often called simply a \textbf{monoidal adjunction}. \item The dual: an adjunction in the 2-category $MonCat_c$ of monoidal categories and colax monoidal functors, in which case the left adjoint is colax and the right adjoint is strong. One might call this an \textbf{opmonoidal adjunction}. \item A mixed situation, in which the left adjoint is colax, the right adjoint is lax, and the lax and colax structure maps are [[mates]] under the adjunction. This is a [[conjunction]] in the [[double category]] of monoidal categories and lax and colax monoidal functors, so we may call it a \textbf{monoidal conjunction} or a \textbf{lax/colax monoidal adjunction}. By [[doctrinal adjunction]], given any adjunction between monoidal categories, if the right adjoint is lax monoidal, then the left adjoint automatically acquires a colax monoidal structure making the adjunction into a monoidal conjunction, and dually. \end{itemize} \hypertarget{Details}{}\subsection*{{Details}}\label{Details} As mentioned \hyperlink{MonoidalAdjnctionIdea}{above}, the nature of monoidal adjunctions follows as a special case from generalities of [[doctrinal adjunctions]]. For the record, here is an explicit discussion: \begin{prop} \label{MonoidalAdjunctionElementary}\hypertarget{MonoidalAdjunctionElementary}{} Let \begin{displaymath} \mathcal{C} \underoverset {\underset{R}{\longrightarrow}} {\overset{L}{\longleftarrow}} {\bot} \mathcal{D} \end{displaymath} be a pair of [[adjoint functors]] between [[monoidal categories]], such that the [[left adjoint]] $L$ is a [[strong monoidal functor]] by [[natural isomorphisms]] \begin{displaymath} \mu_L(X,Y) \;\colon\; L(X) \otimes L(Y) \overset{\simeq}{\longrightarrow} L(X \otimes Y) \end{displaymath} and \begin{displaymath} e_L \;\colon\; 1 \overset{\simeq}{\longrightarrow} L(1) \,. \end{displaymath} Then \begin{enumerate}% \item the [[right adjoint]] $R$ becomes a [[lax monoidal functor]] via natural morphisms \begin{displaymath} \mu_R(X,Y) \;\colon\; R (X) \otimes R(Y) \overset{\eta(R(X) \otimes R(Y))}{\longrightarrow} R L (R(X) \otimes R(Y)) \underoverset{}{ R( {\mu_L^{-1}(R(X), R(Y))} ) }{\longrightarrow} R ( L R(X) \otimes L R (Y) ) \overset{R( \epsilon(X) \otimes \epsilon(Y) )}{\longrightarrow} R(X \otimes Y) \end{displaymath} and \begin{displaymath} e_R \;\colon\; 1 \overset{\eta(1)}{\longrightarrow} R L(1) \overset{R(e_L^{-1})}{\longrightarrow} R(1) \,, \end{displaymath} where $\eta$ denotes the [[adjunction unit]] and $\epsilon$ denotes the [[adjunction counit]], as usual. \item For any object $A \in \mathcal{D}$ carrying the structure of a [[monoid object]] $(A, \mu_A, e_A)$, then \begin{enumerate}% \item the [[unit of the adjunction]] $\eta(A) \;\colon\; A \longrightarrow R L(A)$ is a monoid [[homomorphism]] with respect to the canonically induced monoid structure on $R L(A)$ (\href{monoidal+functor#MonoidsToMonoidsByLaxMonoidal}{this prop.}) given by \begin{displaymath} \mu_{R L(A)} \;\colon\; R L(A) \otimes R L(A) \overset{\mu_R(L(A))}{\longrightarrow} R( L(A) \otimes L(A)) \overset{R(\mu_L(A))}{\longrightarrow} R L(A \otimes A) \overset{R L(\mu_A)}{\longrightarrow} R L(A) \end{displaymath} and \begin{displaymath} e_{R L(A)} \;\colon\; 1 \overset{e_R}{\longrightarrow} R(1) \overset{R(e_L)}{\longrightarrow} R L(1) \overset{R L(e_A)}{\longrightarrow} R L(A) \end{displaymath} \item similarly for the [[counit of the adjunction]]. \end{enumerate} \end{enumerate} \end{prop} \begin{proof} The first statement is discussed at \emph{[[oplax monoidal functor]]}. For the second statement, we need first need to check that the following [[commuting square|square commutes]]: \begin{displaymath} \itexarray{ A \otimes A &\overset{\eta(A) \otimes \eta(A)}{\longrightarrow}& R L (A) \otimes R L (A) \\ {}^{\mathllap{\mu_A}}\downarrow && \downarrow^{\mathrlap{\mu_{R L(A)}}} \\ A &\underset{\eta(A)}{\longrightarrow}& R L(A) } \end{displaymath} Now by definition, the composite of the top and right morphism here is the total diagonal composite in the following diagram: \begin{displaymath} \itexarray{ && A \otimes A &\overset{\eta(A \otimes A)}{\longrightarrow}& R L(A \otimes A) &\overset{R(\mu_L^{-1})}{\longrightarrow}& R( L(A) \otimes L(A) ) \\ && {}^{\mathllap{\eta(A) \otimes \eta(A)}}\downarrow && {}^{\mathllap{ R L( \eta(A) \otimes \eta(A) ) }}\downarrow && {}^{\mathllap{R( L(\eta(A)) \otimes L(\eta(A)) )}}\downarrow & \searrow^{\mathrlap{R(id \otimes id)}} \\ \mu_R(L(A)) &\colon& R L (A) \otimes R L ( A) &\overset{\eta(R L (A) \otimes R L (A))}{\longrightarrow}& R L (R L ( A) \otimes R L (A)) &\underoverset{}{ R( {\mu_L^{-1}(R L(A))} ) }{\longrightarrow}& R ( L R L (A) \otimes L R L (A) ) &\overset{R( \epsilon(L(A)) \otimes \epsilon(L(A)) )}{\longrightarrow}& R(L(A) \otimes L(A)) \\ && && && && \downarrow^{\mathrlap{ R( \mu_L(A)) }} \\ && && && && R L( A \otimes A ) \\ && && && && \downarrow^{\mathrlap{ R L (\mu_A) }} \\ && && && && R L (A) } \end{displaymath} Here the top sqaures commute by naturality of $\eta$ and $\mu_L$, and top right diagonal morphism is the [[identity morphism]], as shown, by the [[zig-zag identity]] for the adjunction $(L \dashv R)$. Therfore $R(\mu_L^{-1})$ cancels agains $R(\mu_L)$. so that the composite morphism in question becomes just $A \otimes A \overset{\eta(A \otimes A)}{\longrightarrow} R L(A \otimes A) \overset{ R L(\mu_A) }{\longrightarrow} R L(A)$. Again by the naturality of the [[adjunction unit]] $\eta$ \begin{displaymath} \itexarray{ A \otimes A &\overset{\eta(A \otimes A)}{\longrightarrow}& R L (A \otimes A) \\ {}^{\mathllap{ \mu_A }}\downarrow && \downarrow^{\mathrlap{R L(\mu_A)}} \\ A &\underset{\eta(A)}{\longrightarrow}& R L (A) } \end{displaymath} this equals $\eta(A) \circ \mu_A$, as required. Finally we need to check that the following diagram commutes: \begin{displaymath} \itexarray{ && 1 \\ & {}^{\mathllap{e_A}}\swarrow && \searrow^{\mathrlap{ e_{R L (A)} }} \\ A && \underset{\eta(A)}{\longrightarrow} && R L(A) } \end{displaymath} Now unwinding the above definitions of $e_{R L}(A)$ in terms of the definition of $e_R$ we find that \begin{displaymath} e_{R L (A)} \;\colon\; 1 \overset{\eta(1)}{\longrightarrow} R L(1) \overset{R(e_L^{-1})}{\longrightarrow} R(1) \overset{R(e_L)}{\longrightarrow} R L(1) \overset{R L(e_a)}{\longrightarrow} R L(A) \,. \end{displaymath} Here the two morphisms in the middle cancel, so that we are left just with \begin{displaymath} e_{R L(A)} \;\colon\; 1 \overset{\eta(1)}{\longrightarrow} R L(1) \overset{R L(e_A)}{\longrightarrow} R L (A) \,. \end{displaymath} That this equals $\eta(A)\circ e_A$, as required, follows by the naturality of $\eta$: \begin{displaymath} \itexarray{ 1 &\overset{\eta(1)}{\longrightarrow}& R L(1) \\ {}^{\mathllap{e_A}}\downarrow && \downarrow^{\mathrlap{R L(e_A)}} \\ A &\underset{\eta(A)}{\longrightarrow}& R L(A) } \,. \end{displaymath} The argument for the homomorphism property of the counit should be formally dual to the above. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{Stabilization}\hypertarget{Stabilization}{} \textbf{([[stabilization]] in [[stable homotopy theory]])} The [[stabilization]] adjunction \begin{displaymath} Ho(Spectra) \underoverset {\underset{\Omega^\infty}{\longrightarrow}} {\overset{\Sigma^\infty(-)}{\longleftarrow}} {\bot} Ho(Spaces^{\ast/}) \underoverset {\underset{}{\longrightarrow}} {\overset{(-)_+}{\longleftarrow}} {} Ho(Spaces) \end{displaymath} between the [[classical homotopy categories]] $Ho(Spaces)$ and $Ho(Spaces^{\ast/})$ of ([[pointed topological space|pointed]]) [[topological spaces]] and the [[stable homotopy category]] $Ho(Spectra)$ is a monoidal adjunction, since the [[left adjoint]] $\Sigma^\infty(-)_+$ (forming the [[suspension spectrum]] of a space after freely [[pointed topological space|adjoining a basepoint]]) is [[strong monoidal functor|strong monoidal]] with respect to forming [[product topological spaces]] and forming [[smash product of spectra]], respectively. In fact this is the [[derived functors]] of what is even a [[monoidal Quillen adjunction]] between the [[classical model structure on topological spaces]] and the stable [[model structure on orthogonal spectra]] (\href{Introduction+to+Stable+homotopy+theory+--+1-2#StableMonoidalQuillenSuspensionSpectrumFunctor}{this cor.}), which implies (strong) monoidality of the derived functors on homotopy categories (\href{Introduction+to+Stable+homotopy+theory+--+1-2#StrongMonoidalDerivedFunctorFromStrongMonoidalQuillenAdjunction}{this prop.}). In detail, let \begin{displaymath} (L \dashv R) \;\colon\; \mathbb{S}_{orth}Mod_{stable} \underoverset {\underset{\Omega^\infty_{orth}}{\longrightarrow}} {\overset{\Sigma^\infty_{orth}}{\longleftarrow}} {\bot} Top^{\ast/}_{Quillen} \underoverset {\underset{}{\longrightarrow}} {\overset{(-)_+}{\longleftarrow}} {\bot} Top_{Quillen} \end{displaymath} be the Quillen adjunction on orthogonal spectra (\href{Introduction+to+Stable+homotopy+theory+--+1-2#SuspensionSpectrumStructuredStrictQuillenAdjunction}{here}). The left adjoint $L$ is a strong monoidal functor, and hence so is its [[derived functor]] $\Sigma^\infty(-)_+ \colon Ho(Top) \to Ho(Spectra)$ (by \href{Introduction+to+Stable+homotopy+theory+--+1-2#StrongMonoidalDerivedFunctorFromStrongMonoidalQuillenAdjunction}{this prop.}). We want to see that the structure of a lax monoidal functor which is induced on the derived right adjoint $\Omega^\infty(-) \colon Ho(Top) \to Ho(Spectra)$ via prop. \ref{MonoidalAdjunctionElementary} is the expected one, given on [[Omega-spectra]] $X$ and $Y$ by \begin{displaymath} \Omega^\infty(X) \wedge \Omega^\infty(X) = X_0 \wedge Y_0 \overset{}{\to} (X \wedge Y)_0 = \Omega^\infty( X \wedge Y ) \,. \end{displaymath} To see this, observe that if $X$ and $Y$ are [[CW-spectrum|CW-]][[Omega-spectra]] and hence cofibrant and fibrant in $\mathbb{S}_{orth}Mod_{stable}$ then the derived lax monoidal structure is given by the total bottom composite in the following diagram \begin{displaymath} \itexarray{ R (X) \otimes R(Y) &\overset{\eta(R(X) \otimes R(Y))}{\longrightarrow}& R L (R(X) \otimes R(Y)) &\underoverset{}{ R( {\mu_L^{-1}(R(X), R(Y))} ) }{\longrightarrow}& R ( L R(X) \otimes L R (Y) ) &\overset{R( \epsilon(X) \otimes \epsilon(Y) )}{\longrightarrow}& R(X \otimes Y) \\ &{}_{\mathllap{ \text{derived } \atop {\text{adjunction unit}} }}\searrow& \downarrow^{\mathrlap{R j L (R(X) \otimes R(Y))}} && \downarrow^{\mathrlap{R j ( L R (X) \otimes L R(Y) )}} && \downarrow^{\mathrlap{ R j( X \otimes Y ) }} \\ && R P L (R(X) \otimes R(Y)) &\underoverset{}{ R Q( {\mu_L^{-1}(R(X), R(Y))} ) }{\longrightarrow}& R P ( L R(X) \otimes L R (Y) ) &\overset{R Q( \epsilon(X) \otimes \epsilon(Y) )}{\longrightarrow}& R P (X \otimes Y) } \,, \end{displaymath} where we write for brevity $(L \dashv R) \coloneqq (\Sigma^\infty_{orth} \dashv \Omega^\infty_{orth})$, and where $j \colon id \longrightarrow P$ denotes [[functorial factorization|functorial]] [[fibrant replacement]] (which exists since the [[small object argument]] applies in $\mathbb{S}_{orth}Mod_{stable}$). By functoriality of the replacement, all the squares commute, so that the derived lax monoidal structure on CW-Omega spectra is seen to be equivalently the underived one. But that underived top horizontal composite is manifestly just the canonical isomorphism $X_0 \wedge Y_0 \simeq (X \wedge Y)_0$ (since $R$ simply picks the component space in degree-0 and $L$ preserves the component space in degree 0). \end{example} \begin{example} \label{ExponentialModality}\hypertarget{ExponentialModality}{} \textbf{([[exponential modality]] in [[linear type theory]])} In [[linear type theory]] (see there for more) the [[exponential modality]] $!$ may have [[categorical semantics]] as the [[comonad]] induced by a monoidal adjunction. \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[projection formula]] \item [[enriched adjunction]] \end{itemize} [[!redirects monoidal adjunctions]] [[!redirects opmonoidal adjunction]] [[!redirects opmonoidal adjunctions]] [[!redirects comonoidal adjunction]] [[!redirects comonoidal adjunctions]] [[!redirects monoidal conjunction]] [[!redirects monoidal conjunctions]] [[!redirects strong monoidal adjunction]] [[!redirects strong monoidal adjunctions]] \end{document}