\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{monoidal category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{other_coherence_conditions}{Other coherence conditions}\dotfill \pageref*{other_coherence_conditions} \linebreak \noindent\hyperlink{strict_monoidal_categories}{Strict monoidal categories}\dotfill \pageref*{strict_monoidal_categories} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{coherence}{Coherence}\dotfill \pageref*{coherence} \linebreak \noindent\hyperlink{closure}{Closure}\dotfill \pageref*{closure} \linebreak \noindent\hyperlink{relation_to_multicategories}{Relation to multicategories}\dotfill \pageref*{relation_to_multicategories} \linebreak \noindent\hyperlink{internal_logic}{Internal logic}\dotfill \pageref*{internal_logic} \linebreak \noindent\hyperlink{where_the_definition_comes_from}{Where the Definition Comes From}\dotfill \pageref*{where_the_definition_comes_from} \linebreak \noindent\hyperlink{relation_to_lax_functors_orientals_and_descent}{Relation to lax functors, orientals and descent}\dotfill \pageref*{relation_to_lax_functors_orientals_and_descent} \linebreak \noindent\hyperlink{remark_pseudo_versus_lax_orientals_versus_unorientals}{Remark: pseudo versus lax, orientals versus unorientals}\dotfill \pageref*{remark_pseudo_versus_lax_orientals_versus_unorientals} \linebreak \noindent\hyperlink{variations}{Variations}\dotfill \pageref*{variations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{monoidal category} is a [[category]] equipped with some notion of `tensor product'. A good example is the category [[Vect]], where we can take the tensor product, not only of vector spaces, but also of linear maps: given linear maps $f : V \to W$ and $f^\prime: V^\prime \to W^\prime$, we get a linear map \begin{displaymath} f \otimes f^\prime: V \otimes V^\prime \to W \otimes W^\prime \end{displaymath} The same category can often be made into a monoidal category in more than one way. For example the category [[Set]] can be made into a monoidal category with cartesian [[product]] or disjoint union (i.e. [[coproduct]]) as the `tensor product'. We can also make [[Vect]] into a monoidal category with direct sum as the `tensor product' --- this may seem perverse, but it's actually very useful. For any monoidal category $M$, the operation of tensor product is actually a [[functor]] \begin{displaymath} \otimes : M \times M \to M \end{displaymath} This functor, which we can think of as a kind of `multiplication', makes $M$ into a [[vertical categorification|vertically categorified]] version of a [[monoid]]. This explains the term `monoidal category'. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \textbf{monoidal category} is a [[category]] $\mathcal{C}$ equipped with \begin{enumerate}% \item a [[functor]] \begin{displaymath} \otimes \;\colon\; \mathcal{C} \times \mathcal{C} \longrightarrow \mathcal{C} \end{displaymath} out of the [[product category]] of $\mathcal{C}$ with itself, called the \textbf{[[tensor product]]}, \item an object \begin{displaymath} 1 \in \mathcal{C} \end{displaymath} called the \textbf{[[unit object]]} or \textbf{[[tensor unit]]}, \item a [[natural isomorphism]] \begin{displaymath} a \;\colon\; ((-)\otimes (-)) \otimes (-) \overset{\simeq}{\longrightarrow} (-) \otimes ((-)\otimes(-)) \end{displaymath} with components of the form \begin{displaymath} a_{x,y,z} : (x \otimes y) \otimes z \to x \otimes (y \otimes z) \end{displaymath} called the \textbf{[[associator]]}, \item a [[natural isomorphism]] \begin{displaymath} \lambda \;\colon\; (1 \otimes (-)) \overset{\simeq}{\longrightarrow} (-) \end{displaymath} with components of the form \begin{displaymath} \lambda_x \colon 1 \otimes x \to x \end{displaymath} called the \textbf{[[left unitor]]}, and \item a [[natural isomorphism]] \begin{displaymath} \rho \;\colon\; (-) \otimes 1 \overset{\simeq}{\longrightarrow} (-) \end{displaymath} with components of the form \begin{displaymath} \rho_x \colon x \otimes 1 \to x \end{displaymath} called the \textbf{[[right unitor]]}, \end{enumerate} such that the following two kinds of [[commuting diagram|diagrams commute]], for all objects involved: \begin{enumerate}% \item \textbf{triangle identity} (not to be confused with the [[triangle identities]] of an [[adjunction]]): \begin{displaymath} \itexarray{ & (x \otimes 1) \otimes y &\stackrel{a_{x,1,y}}{\longrightarrow} & x \otimes (1 \otimes y) \\ & {}_{\rho_x \otimes 1_y}\searrow && \swarrow_{1_x \otimes \lambda_y} & \\ && x \otimes y && } \end{displaymath} \item the \textbf{[[pentagon identity]]} (or \textbf{pentagon equation}): \begin{displaymath} \itexarray{ && (w \otimes x) \otimes (y \otimes z) \\ & {}^{\mathllap{\alpha_{w \otimes x, y, z}}}\nearrow && \searrow^{\mathrlap{\alpha_{w,x,y \otimes z}}} \\ ((w \otimes x ) \otimes y) \otimes z && && (w \otimes (x \otimes (y \otimes z))) \\ {}^{\mathllap{\alpha_{w,x,y}} \otimes id_z }\downarrow && && \uparrow^{\mathrlap{ id_w \otimes \alpha_{x,y,z} }} \\ (w \otimes (x \otimes y)) \otimes z && \underset{\alpha_{w,x \otimes y, z}}{\longrightarrow} && w \otimes ( (x \otimes y) \otimes z ) } \end{displaymath} \end{enumerate} \end{defn} \hypertarget{other_coherence_conditions}{}\subsubsection*{{Other coherence conditions}}\label{other_coherence_conditions} The original list of [[coherence law|coherence axioms]] for monoidal categories given by Mac Lane in 1963 was longer; Max Kelly showed they could be whittled down to just the pentagon and triangle identities. We reproduce his arguments here. In the proofs below, monoidal product symbols $\otimes$ will be suppressed, to save space. \begin{lemma} \label{kel1}\hypertarget{kel1}{} \textbf{(\hyperlink{Kelly}{Kelly 64})} In a monoidal category, the equation $\lambda_x y = \lambda_{x y} \circ \alpha_{1, x, y}$ holds, i.e., the diagram \begin{displaymath} \itexarray{ (1 x) y & & \\ ^\mathllap{\alpha_{1, x, y}} \downarrow & \searrow^\mathrlap{\lambda_x y} & \\ 1 (x y) & \underset{\lambda_{x y}}{\to} & x y } \end{displaymath} commutes. Similarly, the following equation holds: $\rho_{x y} = (x \rho_y) \circ \alpha_{x, y, 1}$. \end{lemma} \begin{proof} We prove only the first equation; the proof of the second is entirely analogous. Since the functor $1 \otimes -$ is an equivalence (being isomorphic to the identity functor), it suffices to show that the triangle on the right in the diagram below commutes: \begin{displaymath} \itexarray{ ((1 1)x) y & \stackrel{\alpha_{1, 1, x}y}{\to} & (1(1 x))y & \stackrel{\alpha_{1, 1 x, y}}{\longrightarrow} & 1((1 x)y) & \stackrel{1\alpha_{1, x, y}}{\to} & 1(1(x y)) \\ & ^\mathllap{(\rho_1 x)y} \searrow & \downarrow^\mathrlap{(1 \lambda_x)y} & & ^\mathllap{1(\lambda_x y)} \downarrow & ? \swarrow^\mathrlap{1(\lambda_{x y})} & \\ & & (1 x)y & \underset{\alpha_{1, x, y}}{\to} & 1(x y) & & } \end{displaymath} where the square in the middle [[commuting square|commutes]] by [[natural transformation|naturality]] of $\alpha$, and the triangle on the left commutes by a unit coherence triangle (tensored by $y$ on the right). Since all the arrows are isomorphisms, it suffices to show that the diagram formed by the perimeter commutes. But this follows from the commutativity of the diagram \begin{displaymath} \itexarray{ & & (1(1 x))y & \stackrel{\alpha_{1, 1 x, y}}{\to} & 1((1 x)y) \\ & ^\mathllap{\alpha_{1, 1, x}y} \nearrow & & & \downarrow^\mathrlap{1\alpha_{1, x, y}} \\ ((1 1)x)y & \stackrel{\alpha_{1 1, x, y}}{\to} & (1 1)(x y) & \stackrel{\alpha_{1, 1, x y}}{\to} & 1(1(x y)) \\ ^\mathllap{(\rho_1 x)y} \downarrow & & ^\mathllap{\rho_1(x y)} \downarrow & \swarrow^\mathrlap{1 \lambda_{x y}} & \\ (1 x)y &\underset{\alpha_{1, x, y}}{\to} & 1(x y) & & } \end{displaymath} which uses the pentagon coherence condition, naturality of $\alpha$, and a unit coherence condition. \end{proof} \begin{lemma} \label{kel2}\hypertarget{kel2}{} \textbf{(\hyperlink{Kelly}{Kelly 64})} The equation $\lambda_1 = \rho_1 \colon 1 \otimes 1 \to 1$ holds in a monoidal category. \end{lemma} \begin{proof} Since $1 \otimes -$ is an equivalence, it suffices to show $1 \otimes \lambda_1 = 1 \otimes \rho_1$. But we have the equations \begin{displaymath} (1 \lambda_1) \circ \alpha_{1, 1, 1} = \lambda_1 1 \end{displaymath} \begin{displaymath} \, \end{displaymath} \begin{displaymath} (1 \rho_1) \circ \alpha_{1, 1, 1} = \lambda_1 1 \end{displaymath} where the first equation follows from Lemma \ref{kel1} and the second from a unit coherence triangle. One concludes by composing each side of the equations above by $\alpha_{1, 1, 1}^{-1}$. \end{proof} \hypertarget{strict_monoidal_categories}{}\subsubsection*{{Strict monoidal categories}}\label{strict_monoidal_categories} A monoidal category is said to be \textbf{strict} if the associator, left unitor and right unitors are all identity morphisms. In this case the pentagon and triangle commute automatically. There is a [[strict 2-category]] MonCat with: \begin{itemize}% \item monoidal categories as objects, \item [[monoidal functor]]s as morphisms, \item [[monoidal natural transformation]]s as 2-morphisms. \end{itemize} One version of Mac Lane's Coherence Theorem states that in MonCat, every monoidal category is [[equivalence of categories|equivalent]] to a strict one. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{coherence}{}\subsubsection*{{Coherence}}\label{coherence} \begin{itemize}% \item [[coherence theorem for monoidal categories]] \end{itemize} \hypertarget{closure}{}\subsubsection*{{Closure}}\label{closure} \begin{uprop} Every small monoidal category $C$ embeds as a [[full subcategory]] $C \hookrightarrow D$ into a [[closed monoidal category]], where the embedding functor is a strong [[monoidal functor]]. \end{uprop} \begin{proof} One can take $D = PSh(C)$ be the [[category of presheaves]] on $C$ and $j : C \hookrightarrow D$ the [[Yoneda embedding]]. The category of presheaves on $C$ becomes a [[closed monoidal category]] with the [[Day convolution]] tensor product, which for $F,G \in PSh(C)$ is \begin{displaymath} F \star G : e \mapsto \int^{c,d \in C} F(c) \times G(d) \times Hom_C(e, c \otimes d) \,. \end{displaymath} If $F$ and $G$ are both in the image of the Yoneda embedding, $F = Hom_C(-,a)$, $G = Hom_C(-,b)$ for $a,b \in C$, then applying the [[co-Yoneda lemma]] to the two [[coend]]s over $c$ and $d$ we get \begin{displaymath} \begin{aligned} (j(a) \star j(b))(e) & = \int^{c,d \in C} Hom_C(c,a) \times Hom_C(d,b)\times Hom_C(e, c \otimes d) \\ & \simeq Hom_C(e, a \otimes b) \\ & \simeq j(a \otimes b)(e) \,, \end{aligned} \end{displaymath} naturally in $e$. \end{proof} \hypertarget{relation_to_multicategories}{}\subsubsection*{{Relation to multicategories}}\label{relation_to_multicategories} There is a [[faithful functor]] from monoidal categories to [[multicategories]], given by forming [[representable multicategory|representable multicategories]]. \hypertarget{internal_logic}{}\subsubsection*{{Internal logic}}\label{internal_logic} The [[internal language]] of monoidal categories is a flavor of [[linear logic]]/[[linear type theory]] (non-commutative multiplicative intuitionistic linear type theory). In this logical context the [[string diagrams]] of monoidal catgeories are called [[proof nets]]. \hypertarget{where_the_definition_comes_from}{}\subsection*{{Where the Definition Comes From}}\label{where_the_definition_comes_from} The definition of monoidal category looks rather complicated at first sight, so it is natural to wonder if there is some magic wand we can wave that makes it appear automatically. For example, one might wonder if we can define monoidal categories using [[internalization]]. In fact a \emph{strict} monoidal category is just a [[monoid]] internal to the category [[Cat]]. Unfortunately this definition is circular, since to define a monoid internal to [[Cat]], we need to use the fact that [[Cat]] is a monoidal category! Furthermore, hardly any of the monoidal categories in nature are strict. [[Ronnie Brown]] I entirely understand that most monoidal categories in nature are not strict, and CWM gives an example to show that you cannot even get strictness for the cartesian product. On the other hand, for the cartesian product we get coherence properties directly from the universal property. Now the tensor product in many monoidal categories in nature comes from the cartesian product, but with more elaborate morphisms. Thus the tensor product of vector spaces comes from bilinear maps. The associativity of this tensor product comes from looking at trilinear maps, and so derives from the associativity of the cartesian product. In a sense, this tensor product is as coherently associative as the cartesian product, which could means that in a rough and ready way we do not need to worry. My query is whether there is a study of this kind of argument in categorical generality? [[Peter LeFanu Lumsdaine]]: The setting for a statement like this would presumably be the connections between monoidal categories and multicategories, which are discussed very nicely in Chapters 2 and 3 of [[Tom Leinster]]`s [[Higher Operads, Higher Categories|book]]. As far as I remember he doesn't give anything that would quite make this argument, and I don't know the literature of these well enough to say whether it's been done elsewhere, but I'd guess it has, or at least that it would be fairly straightforward to give in that terminology. The statement would look something like: ``If $\mathbf{C}$ is a multicategory generated by its nullary, unary and binary arrows, $C$ its underlying category, and $\otimes$, $1$ are functors on $C$ [[representable functor|representing]] the nullary and binary arrows of $C$, then $\otimes$ and $1$ form the tensor and unit of a monoidal structure on $C$.'' The ugly part of this is the generation condition, which will be needed since we only start with $\otimes$ and $1$ (indeed, some stronger presentation condition might be needed, actually). The [[bias|unbiased]] version, where we have not just $\otimes$ and $1$ but an $n$-ary tensor product for every $n$, is essentially given in Leinster's book, iirc, and doesn't require such a condition. So, we need to weaken the definition of monoidal category, and this is where the subtleties come in: we need the associator, left unitor, and right unitor to satisfy some `coherence laws' --- e.g. the pentagon identity. But \emph{where do the coherence laws come from?} In fact, these are precisely what we need to make any diagram built solely by tensoring, associators, and unitors commute. This fact is another version of Mac Lane's Coherence Theorem. Mac Lane proved it in the same paper where he originally defined the concept of monoidal category. There are indeed `magic wands' that automatically produce the definition of monoidal category, but most of these magic wands are so heavy that only more advanced wizards can lift them. For example, you can define a monoidal category to be a [[pseudomonoid]] internal to the 2-category [[Cat]] --- but nobody knew how to define these concepts until they knew what a monoidal category is! Two other closely related approaches involve [[2-monad|2-monad theory]] and [[homotopy theory]]. To make the first one work, the magic words to say are ``there is a 2-monad whose algebras are strict monoidal categories, and a (non-strict) monoidal category is a pseudo-algebra for that 2-monad.'' This doesn't give you the definition of monoidal categories that we're used to, though; it gives you the [[bias|unbiased]] version. To make the second magic wand work, the magic words to say are ``there is a monad/operad/etc. in [[Cat]] whose algebras are strict monoidal categories, and the monad/operad/etc. whose algebras are (non-strict) monoidal categories is a cofibrant replacement for that one.'' Since cofibrant replacements are usually defined only up to equivalence, this one also doesn't determine the usual definition uniquely. There is a ``canonical'' choice, but again it gives you the unbiased version. The equation ``cofibrant = [[flexibility|flexible]]'' says that these two magic wands are doing essentially the same thing. Of course, both are also sort of a cheat, since in order to prove that the biased and unbiased definitions are equivalent, you need to have the [[coherence theorem]] for the biased definition. However, it's only because of the coherence theorem that we can say definitely that the usual set of complicated-looking diagrams is ``correct.'' The approach using lax $\infty$-functors really only postpones this question, since you also need a coherence theorem to show that the definition of lax $\infty$-functor is ``correct.'' So perhaps there is no magic wand after all, at least not one that produces the \emph{specific} diagrams in the usual biased definition of monoidal category. However, if we temporarily ignore the unitors and focus on the associator, we may ask \emph{where does the pentagon identity come from?} And one answer to this is provided by the Stasheff polytopes, which can be nicely obtained using Ross Street's theory of orientals. For instance the pentagon diagram above is nothing but the [[oriental|4th oriental]]! The tensor product itself is the second oriental, and the associator the third. The following section explains this in a bit more detail. \hypertarget{relation_to_lax_functors_orientals_and_descent}{}\subsection*{{Relation to lax functors, orientals and descent}}\label{relation_to_lax_functors_orientals_and_descent} One can understand the structure of a monoidal category as a special simple case of the general notion of ``lax $\infty$-functor'', also known -- up to the issue of invertible versus non-invertible structure morphisms -- as the notion of $\infty$-categorical [[descent]] and as the notion of [[anafunctor|infinity-anafunctor]]. The discussion to follow now notably links the definition of monoidal category as above with that of [[monoidal (infinity,1)-category]]. This may be familiar from the special simple case of a \emph{monoid} in any bicategory $C$, which can be identified with a lax functor \begin{displaymath} A : pt \to C \end{displaymath} from the point to $C$. This lax functor sends the point to some object of $C$, sends the [[identity morphism]] on the point to some [[endomorphism]] of that object. The unitor of the lax functor gives the product on that endomorphism and the coherence of the unitor is the associativity condition on this product. This is part of a more general principle. A lax [[monoid]] in any tricategory would again be a lax functor from the point to that tricategory. And a monoidal category can be regarded as a pseudomonoid in the tricategory $\mathbf{B}Cat$, which has a single object, categories as 1-morphisms with the composition of 1-morphisms being the standard cartesian [[tensor product]] on categories. Evidently, in the fully general context of weak $\infty$-categories it becomes increasingly hard to state what a lax functor into a given $\infty$-category should be: it will involve a plethora of structure morphisms and their coherences. One task of [[higher category theory]] is to organize this mess into something pretty and then to deal with this problem. But before being intimidated by the problem in its most general form, it may pay to understand it in slightly simplified situations. One such slightly simplified setup is that of \emph{strict} $\infty$-categories, usually known as $\omega$-categories or [[strict omega-category|strict omega-categories]]. For that case, Ross Street has given a general combinatorial formula for the $\infty$-coherence law of the general monoidal structure: this is encoded in the [[oriental|orientals]], which are nothing but the standard simplicial simplices, but equipped with extra information about source and targets of all faces. See the picture of the [[oriental|first five orientals]]. We can read off the above definition of a monoidal category from them as follows: \begin{itemize}% \item identify the monoidal category $M$ itself with the first oriental, just an arrow; \item identify the ambient product $M \times M$ with the juxtaposition of two such arrows; \item identify the tensor product $M \otimes M \to M$ with the second oriental: a triangular cell going from the concatenation of two arrows to a single arrow; \item identify the \emph{associator} with the third oriental, the tetrahedron: a map from one way to compose three arrows (=copies of $M$) to the other way of doing this; \item identify the pentagon identity with the fourth oriental. In general, the fourth oriental is itself a nontrivial 4-cell, but assume now that the big arrow in the middle of that is the identity. This makes what in general would be the \emph{pentagonator}, the \emph{pentagon identity} in this case. \end{itemize} \begin{displaymath} \itexarray{\arrayopts{\rowalign{center}} O(\Delta^0) = & \{ 0\} \\ O(\Delta^1) = & \left\{ 0 \to 1\right\} \\ O(\Delta^2) = & \left\{ \itexarray{ } \right\}\\ O(\Delta^3) = & \left\{ \itexarray{ }\right\}\\ O(\Delta^4) = & \left\{ \itexarray{ } \right\} } \end{displaymath} This shows that it is a bit of an illusion to think of a \emph{pentagon} identity: the full geometric shape is really a 4-dimensional tetrahedron (the 4-simplex) whose five tetrahedral faces are the five edges of the pentagon identity. We can formulate this identification of structure morphisms and coherence laws with orientals more formally using the general notion of [[descent]], which was indeed the original motivation for conceiving the orientals. The descent $\infty$-category $Desc(Y,A)$ (constructed in terms of orientals) can be regarded as a way to formalize ``lax $\infty$-functor from $Y$ to $A$''. Indeed, using observations pretty much as just sketched, one finds that for $C$ a 2-category that \begin{displaymath} Desc(pt, C) \simeq WeakMonoids(C) \end{displaymath} and for $C$ the 3-category $\mathbf{B}Cat$ we have \begin{displaymath} Desc(pt, \mathbf{B}Cat) \simeq LaxMonCat \,, \end{displaymath} where the 2-category on the right is defined as $MonCat$ above, but with the associator not required to be an isomorphism. \hypertarget{remark_pseudo_versus_lax_orientals_versus_unorientals}{}\subsection*{{Remark: pseudo versus lax, orientals versus unorientals}}\label{remark_pseudo_versus_lax_orientals_versus_unorientals} In closing, it should be remarked that the fact that everything here is \emph{lax} instead of \emph{pseudo} is related to a curious property of the orientals: the $n$th oriental for $n \ge 1$ \emph{fails} to be weakly equivalent to the point. As a result, the objects of $Desc(pt, C)$ are not quite $\omega$-[[anafunctor]]s from the point to $C$, since they do not map out of a proper hypercover of $C$. In the strict notion of descent as used in most of the literature, the orientals would hence provide something \emph{more general} than ordinary descent, which in its generality is lacking some properties usually required of descent. We can remedy this by replacing in the definition of the descent $\infty$-category $Desc(Y,C)$ the orientals by another cosimplicial $\infty$-category, one which \emph{is} equivalent to the point in each degree. Doing so and then going through the above discussion will make \emph{all} the structure maps appeaing have inverses. But this will also apply to the monoidal product itself, then, which is usually not desired. \hypertarget{variations}{}\subsection*{{Variations}}\label{variations} \begin{itemize}% \item [[strict monoidal category]] \item [[braided monoidal category]] \item [[symmetric monoidal category]] \item [[cartesian monoidal category]] \item [[semicartesian monoidal category]] \item [[cocartesian monoidal category]] \item [[fusion category]], [[tensor category]] \item [[multicategory]] \item [[monoidal 2-category]] \item [[premonoidal category]] \item [[distributivity for monoidal structures]] \begin{itemize}% \item [[distributive monoidal category]] \item [[bipermutative category]] \item [[linearly distributive category]] \item [[rig category]] \end{itemize} \end{itemize} higher versions \begin{itemize}% \item [[monoidal bicategory]] \item [[monoidal (∞,1)-category]] \begin{itemize}% \item [[braided monoidal (∞,1)-category]] \item [[symmetric monoidal (∞,1)-category]] \item [[closed monoidal (∞,1)-category]] \end{itemize} \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[MonCat]] \item [[indexed monoidal category]] \item [[traced monoidal category]] \item [[no-cloning theorem]] \item [[Drinfeld center]] \item [[Picard group]], [[Picard 2-group]] \item [[multicategory]], [[bicategory]], [[enriched category]], [[actegory]] \item [[module category]], [[bimodule category]] \item [[semisimple category]] \item [[distributivity for monoidal structures]] \begin{itemize}% \item [[duoidal category]], [[bimonoidal category]] \end{itemize} \item [[braided monoidal category]], [[symmetric monoidal category]] \item [[Hopf monoidal category]] \item [[monoidal topos]] \item [[monoidal (infinity,1)-category]] \item [[monoidal 2-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Exposition of basics of monoidal categories and [[categorical algebra]]: \begin{itemize}% \item \emph{[[geometry of physics -- categories and toposes]]}, Section 2: \emph{\href{geometry+of+physics+--+categories+and+toposes#BasicNotionsOfCategoricalAlgebra}{Basic notions of categorical algebra}} \end{itemize} Monoidal categories were introduced independently by B\'e{}nabou and Mac Lane under the name `category with multiplication'. The current name is due to Eilenberg. \begin{itemize}% \item [[Jean Bénabou]], \emph{Cat\'e{}gories avec multiplication} , C. R. Acad. Sci. Paris \textbf{256} (1963) pp.1887-1890. (\href{http://gallica.bnf.fr/ark:/12148/bpt6k3208j/f1965.image}{gallica}) \item [[Jean Bénabou]], \emph{Alg\`e{}bre \'e{}l\'e{}mentaire dans les cat\'e{}gories avec multiplication} , C. R. Acad. Sci. Paris \textbf{258} (1964) pp.771-774. (\href{gallica.bnf.fr/ark:/12148/bpt6k40102/f817.image}{gallica}) \item [[Saunders Mac Lane]], \emph{Natural Associativity and Commutativity} , Rice University Studies \textbf{49} (1963) pp.28-46. \end{itemize} Shortly after Mac Lane's definition appeared, Max Kelly showed how the coherence axioms could be whittled down to just two: \begin{itemize}% \item [[Max Kelly]], \emph{On MacLane's Conditions for Coherence of Natural Associativities, Commutativities, etc.} , Journal of Algebra \textbf{1} (1964) pp.397-402. \end{itemize} The first monograph-length discussion appeared in \begin{itemize}% \item [[Samuel Eilenberg|S. Eilenberg]], [[Max Kelly|M. G. Kelly]], \emph{Closed Categories} , pp.421-562 in Eilenberg et al. (eds.), \emph{Proceedings of the Conference on Categorical Algebra - La Jolla 1965} , Springer Heidelberg 1966. \end{itemize} Other textbook accounts include \begin{itemize}% \item [[nLab:Pavel Etingof]], Shlomo Gelaki, Dmitri Nikshych, [[nLab:Victor Ostrik]], chapter 2 of \emph{Tensor categories}, Mathematical Surveys and Monographs, Volume 205, American Mathematical Society, 2015 (\href{http://www-math.mit.edu/~etingof/egnobookfinal.pdf }{pdf}) \end{itemize} A fairly comprehensive set of lecture notes on the [[higher algebra]] of monoidal categories is in \begin{itemize}% \item [[Pavel Etingof]], Shlomo Gelaki, Dmitri Nikshych, [[Victor Ostrik]], \emph{Topics in Lie theory and Tensor categories}, Lecture notes (spring 2009) (\href{http://ocw.mit.edu/courses/mathematics/18-769-topics-in-lie-theory-tensor-categories-spring-2009/lecture-notes/}{web}) \end{itemize} A brief discussion in the context of [[enriched category theory]] is in \begin{itemize}% \item [[Max Kelly]], \emph{Basic concepts of enriched category theory}, London Math. Soc. Lec. Note Series \textbf{64}, Cambridge Univ. Press 1982, 245 pp.; remake: TAC reprints 10, \href{http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html}{tac},\href{http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf}{pdf} \end{itemize} Survey of some applications is in \begin{itemize}% \item [[Ross Street]], \emph{Monoidal categories in, and linking, geometry and algebra} (\href{https://arxiv.org/abs/1201.2991}{arXiv:1201.2991}) \end{itemize} Quick surveys of relevant definitions include also \begin{itemize}% \item John Armstrong, \emph{\href{http://unapologetic.wordpress.com/2007/06/28/monoidal-categories/}{Monoidal categories}} \item Wikipedia \emph{\href{http://en.wikipedia.org/wiki/Monoidal_category}{Monoidal category}.} \item [[John Baez]], \emph{\href{http://math.ucr.edu/home/baez/qg-fall2004/definitions.pdf}{Some definitions everyone should know}} \end{itemize} For an elementary introduction to monoidal categories using [[string diagrams]], see: \begin{itemize}% \item [[John Baez]], [[Mike Stay]], \emph{\href{http://math.ucr.edu/home/baez/rosetta.pdf}{Physics, topology, logic and computation: a Rosetta Stone}}. \end{itemize} A more detailed tour of monoidal categories, also using string diagrams, and including autonomous, balanced, braided, compact closed, pivotal, ribbon, rigid, sovereign, spherical, tortile, and traced monoidal categories: \begin{itemize}% \item Peter Selinger, \href{http://www.mathstat.dal.ca/~selinger/papers.html#graphical}{A survey of graphical languages for monoidal categories}. \end{itemize} [[!redirects monoidal category]] [[!redirects monoidal categories]] [[!redirects monoidal structure]] [[!redirects monoidal structures]] [[!redirects monoidal product]] [[!redirects monoidal products]] \end{document}