\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{monoidal homotopy category of a monoidal model category} \begin{prop} \label{MonoidalStructureOnHomotopyCategoryOfMonoidalModelCategory}\hypertarget{MonoidalStructureOnHomotopyCategoryOfMonoidalModelCategory}{} Let $(\mathcal{C}, \otimes, I)$ be a [[monoidal model category]]. Then the [[left derived functor]] of the tensor product exists and makes the [[homotopy category of a model category|homotopy category]] into a [[monoidal category]] $(Ho(\mathcal{C}), \otimes^L, \gamma(I))$. If in in addition $(\mathcal{C}, \otimes)$ satisfies the [[monoid axiom in a monoidal model category|monoid axiom]], then the [[localization]] functor $\gamma\colon \mathcal{C}\to Ho(\mathcal{C})$ carries the structure of a [[lax monoidal functor]] \begin{displaymath} \gamma \;\colon\; (\mathcal{C}, \otimes, I) \longrightarrow (Ho(\mathcal{C}), \otimes^L , \gamma(I)) \,. \end{displaymath} \end{prop} \begin{proof} Consider the explicit model of $Ho(\mathcal{C})$ as the category of fibrant-cofibrant objects in $\mathcal{C}$ with left/right-homotopy classes of morphisms between them (discussed at \emph{[[homotopy category of a model category]]}). A [[derived functor]] exists if its restriction to this subcategory preserves weak equivalences. Now the [[pushout-product axiom]] implies that on the subcategory of cofibrant objects the functor $\otimes$ preserves acyclic cofibrations, and then the preservation of all weak equivalences follows by [[Ken Brown's lemma]]. Hence $\otimes^L$ exists and its [[associativity]] follows simply by restriction. It remains to see its [[unitality]]. To that end, consider the construction of the localization functor $\gamma$ via a fixed but arbitrary choice of (co-)fibrant replacements $Q$ and $R$, assumed to be the identity on (co-)fibrant objects. We fix notation as follows: \begin{displaymath} \emptyset \underoverset{\in Cof}{i_X}{\longrightarrow} Q X \underoverset{\in W \cap Fib}{p_x}{\longrightarrow} X \;\;\,,\;\; X \underoverset{\in W \cap Cof}{j_X}{\longrightarrow} R X \underoverset{\in Fib}{q_x}{\longrightarrow} \ast \,. \end{displaymath} Now to see that $\gamma(I)$ is the [[tensor unit]] for $\otimes^L$, notice that in the [[zig-zag]] \begin{displaymath} (R Q I) \otimes (R Q X) \overset{j_{Q I} \otimes (R Q X)}{\longleftarrow} (Q I) \otimes (R Q X) \overset{(Q I)\otimes j_{Q X}}{\longleftarrow} (Q I) \otimes (Q X) \overset{p_I \otimes (Q X)}{\longrightarrow} I \otimes Q X \simeq Q X \end{displaymath} all morphisms are weak equivalences: For the first two this is due to the [[pushout-product axiom]], for the third this is due to the unit axiom on a monoidal model category. It follows that under $\gamma(-)$ this zig-zig gives an isomorphism \begin{displaymath} \gamma(I) \otimes^L \gamma(X)\simeq \gamma(X) \end{displaymath} and similarly for tensoring with $\gamma(I)$ from the right. To exhibit lax monoidal structure on $\gamma$, we need to construct a [[natural transformation]] \begin{displaymath} \gamma(X) \otimes^L \gamma(Y) \longrightarrow \gamma(X \otimes Y) \end{displaymath} and show that it satisfies the the appropriate [[associativity]] and [[unitality]] condition. By the definitions at \emph{[[homotopy category of a model category]]}, the morphism in question is to be of the form \begin{displaymath} (R Q X) \otimes (R Q Y) \longrightarrow R Q (X\otimes Y) \end{displaymath} To this end, consider the [[zig-zag]] \begin{displaymath} (R Q X) \otimes (R Q Y) \underoverset{\in Cof \cap W}{j_{Q X} \otimes R Q Y}{\longleftarrow} (Q X) \otimes (R Q Y) \underoverset{\in Cof \cap W}{(Q X) \otimes j_{Q Y} }{\longleftarrow} (Q X) \otimes (Q Y) \overset{p_X \otimes (Q Y)}{\longrightarrow} X \otimes (Q Y) \overset{Y \otimes p_Y}{\longrightarrow} X \otimes Y \,, \end{displaymath} and observe that the two morphisms on the left are weak equivalences, as indicated, by the [[pushout-product axiom]] satisfied by $\otimes$. Hence applying $\gamma$ to this zig-zag, which is given by the two horizontal part of the following digram \begin{displaymath} \itexarray{ (R Q X) \otimes (R Q Y) &\longleftarrow& R( Q X \otimes Q Y ) &\longrightarrow& R Q (X \otimes Y) \\ \uparrow^{\mathrlap{id}} && \uparrow^{\mathrlap{j_{Q X \otimes Q Y}}} && \uparrow^{\mathrlap{j_{Q(X \otimes Y)}}} \\ \downarrow^{\mathrlap{id}} && \downarrow^{\mathrlap{id}} && \downarrow^{\mathrlap{p_{X\otimes Y}}} \\ (R Q X) \otimes (R Q Y) &\underoverset{\in Cof \cap W}{j_{Q X} \otimes j_{Q Y}}{\longleftarrow}& (Q X) \otimes (Q Y) &\overset{p_X \otimes p_Y}{\longrightarrow}& X \otimes Y } \,, \end{displaymath} and inverting the first two morphisms, this yields a natural transformation as required. To see that this satisfies associativity if the monoid axiom holds, tensor the entire diagram above on the right with $(R Q Z)$ and consider the following [[pasting]] composite: \begin{displaymath} \itexarray{ (R Q X) \otimes (R Q Y) \otimes (R Q Z) &\longleftarrow& R( Q X \otimes Q Y ) \otimes (R Q Z) &\longrightarrow& (R Q (X \otimes Y)) \otimes (R Q Z) \\ \uparrow^{\mathrlap{id}} && \uparrow^{\mathrlap{j_{Q X \otimes Q Y} \otimes id }} && \uparrow^{\mathrlap{j_{Q(X \otimes Y)}\otimes id }} \\ && && Q(X \otimes Y) \otimes (R Q Z) &\overset{id \otimes j_{Q Z}}{\longleftarrow}& Q(X\otimes Y) \otimes (Q Z) \\ \downarrow^{\mathrlap{id}} && \downarrow^{\mathrlap{id}} && \downarrow^{\mathrlap{p_{(X\otimes Y)} \otimes id }} &(\star)& \downarrow^{\mathrlap{p_{(X \otimes Y)} \otimes id}} \\ (R Q X) \otimes (R Q Y) \otimes (R Q Z) &\underoverset{\in Cof \cap W}{j_{Q X} \otimes j_{Q Y} \otimes id}{\longleftarrow}& (Q X) \otimes (Q Y) \otimes (R Q Z) &\overset{p_X \otimes p_Y \otimes id}{\longrightarrow}& X \otimes Y \otimes (R Q Z) &\underset{id \otimes j_{Q Z}}{\longleftarrow}& X\otimes Y \otimes Q Z &\overset{id \otimes p_Z}{\longrightarrow}& X \otimes Y \otimes Z } \,, \end{displaymath} Observe that under $\gamma$ the total top [[zig-zag]] in this diagram gives \begin{displaymath} (\gamma(X) \otimes^L \gamma(Y)) \otimes^L \gamma(Z) \to \gamma(X\otimes Y)\otimes^L \gamma(Z) \,. \end{displaymath} Now by the [[monoid axiom in a monoidal model category|monoid axiom]] (but not by the pushout-product axiom!), the horizontal maps in the square in the bottom right (labeled $\star$) are weak equivalences. This implies that the total horizontal part of the diagram is a [[zig-zag]] in the first place, and that under $\gamma$ the total top zig-zag is equal to the image of that total bottom zig-zag. But by functoriality of $\otimes$, that image of the bottom zig-zag is \begin{displaymath} \gamma(p_X \otimes p_Y \otimes p_Z) \circ \gamma(j_{Q X} \otimes j_{Q Y} \otimes j_{Q Z})^{-1} \,. \end{displaymath} The same argument applies to left tensoring with $R Q Z$ instead of right tensoring, and so in both cases we reduce to the same morphism in the homotopy category, thus showing the associativity condition on the transformation that exhibits $\gamma$ as a lax monoidal functor. \end{proof} \end{document}