\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{monoidal model category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{MonoidalHomotopyCategory}{Monoidal homotopy category}\dotfill \pageref*{MonoidalHomotopyCategory} \linebreak \noindent\hyperlink{abstractly}{Abstractly}\dotfill \pageref*{abstractly} \linebreak \noindent\hyperlink{explicitly}{Explicitly}\dotfill \pageref*{explicitly} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{classical_homotopy_theory}{Classical homotopy theory}\dotfill \pageref*{classical_homotopy_theory} \linebreak \noindent\hyperlink{SimplicialPresheaves}{Simplicial presheaves}\dotfill \pageref*{SimplicialPresheaves} \linebreak \noindent\hyperlink{homological_algebra_and_stable_homotopy_theory}{Homological algebra and stable homotopy theory}\dotfill \pageref*{homological_algebra_and_stable_homotopy_theory} \linebreak \noindent\hyperlink{categorical_model_structures}{Categorical model structures}\dotfill \pageref*{categorical_model_structures} \linebreak \noindent\hyperlink{model_structure_on_objects}{Model structure on $G$-objects}\dotfill \pageref*{model_structure_on_objects} \linebreak \noindent\hyperlink{model_structure_on_monoids}{Model structure on monoids}\dotfill \pageref*{model_structure_on_monoids} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{monoidal model category} is a [[model category]] which is also a [[closed monoidal category]] in a compatible way. In particular, its [[homotopy category]] inherits a closed monoidal structure, as does the [[(infinity,1)-category]] that it presents. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{MonoidalModelCategory}\hypertarget{MonoidalModelCategory}{} A (symmetric) \textbf{monoidal model category} is [[model category]] $\mathcal{C}$ equipped with the structure of a [[closed monoidal category|closed]] [[symmetric monoidal category]] $(\mathcal{C}, \otimes, I)$ such that the following two compatibility conditions are satisfied \begin{enumerate}% \item ([[pushout-product axiom]]) For every pair of cofibrations $f \colon X \to Y$ and $f' \colon X' \to Y'$, their [[pushout-product]], hence the induced morphism out of the cofibered [[coproduct]] over ways of forming the tensor product of these objects \begin{displaymath} (X \otimes Y') \coprod_{X \otimes X'} (Y \otimes X') \longrightarrow Y \otimes Y' \,, \end{displaymath} is itself a cofibration, which, furthermore, is acyclic if $f$ or $f'$ is. (Equivalently this says that the [[tensor product]] $\otimes : C \times C \to C$ is a left [[Quillen bifunctor]].) \item (unit axiom) For every cofibrant object $X$ and every cofibrant resolution $\emptyset \hookrightarrow Q I \stackrel{p_I}{\longrightarrow} I$ of the [[tensor unit]] $I$, the resulting morphism \begin{displaymath} Q I \otimes X \stackrel{p_I \otimes X}{\longrightarrow} I\otimes X \stackrel{\simeq}{\longrightarrow} X \end{displaymath} \end{enumerate} is a weak equivalence. \end{defn} \begin{remark} \label{CaseOfCofibrantTensorUnit}\hypertarget{CaseOfCofibrantTensorUnit}{} The [[pushout-product axiom]] in def. \ref{MonoidalModelCategory} implies that for $X$ a cofibrant object, then the functor $X \otimes (-)$ is preserves cofibrations and acyclic cofibrations. In particular if the [[tensor unit]] $I$ happens to be cofibrant, then the unit axiom in def. \ref{MonoidalModelCategory} is implied by the \hyperlink{PushoutProductAxiom}{pushout-product axiom}. (Because then $Q I \to I$ is a weak equivalence between cofibrant objects and such are preserved by functors that preserve acyclic cofibrations, by [[Ken Brown's lemma]]. ) \end{remark} \begin{defn} \label{MonoidAxiom}\hypertarget{MonoidAxiom}{} We say a [[monoidal model category]], def. \ref{MonoidalModelCategory}, satisfies the \textbf{[[monoid axiom]]}, def. \ref{MonoidalModelCategory}, if every morphism that is obtained as a [[transfinite composition]] of [[pushouts]] of [[tensor products]] $X\otimes f$ of acyclic cofibrations $f$ with any object $X$ is a weak equivalence. \end{defn} (\hyperlink{SchwedeShipley00}{Schwede-Shipley 00, def. 3.3.}). \begin{remark} \label{}\hypertarget{}{} In particular, the axiom in def. \ref{MonoidAxiom} says that for every object $X$ the functor $X \otimes (-)$ sends acyclic cofibrations to weak equivalences. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{MonoidalHomotopyCategory}{}\subsubsection*{{Monoidal homotopy category}}\label{MonoidalHomotopyCategory} \hypertarget{abstractly}{}\paragraph*{{Abstractly}}\label{abstractly} \begin{prop} \label{LocalizationFunctorIsLaxMonoidal}\hypertarget{LocalizationFunctorIsLaxMonoidal}{} For $(\mathcal{C},\otimes)$ a monoidal model category, def. \ref{MonoidalModelCategory}, then the [[derived functor]] $\otimes^L$ of the tensor product makes the [[homotopy category of a model category|homotopy category of the model category]] itself into a [[monoidal category]], such that the [[localization]] functor \begin{displaymath} \gamma \;\colon\; (\mathcal{C},\otimes) \longrightarrow (Ho(\mathcal{C}), \otimes^L) \end{displaymath} is a [[lax monoidal functor]]. \end{prop} \begin{proof} Let $V$ be a monoidal model category, and consider it as a \emph{[[derivable category]]} in the sense of (\hyperlink{Shulman11}{Shulman 11, section 8}) with $V_Q$ the subcategory of cofibrant objects and $V_R=V$. Then $\otimes :V\times V\to V$ is left derivable, i.e. it preserves the $Q$-subcategories and weak equivalences. Since deriving is [[pseudofunctor|pseudofunctorial]] (and product-preserving) on the [[2-category]] of [[derivable categories]] and [[left derived functor|left derivable functors]], it follows immediately that $Ho(V)$ is monoidal; this is (\hyperlink{Shulman11}{Shulman 11, example 8.13}). Now let $V_0$ denote the category $V$ with its trivial derivable structure: only isomorphisms are weak equivalences, and all objects are both $Q$ and $R$. Then of course $Ho(V_0) = V$, and $V_0$ is also a pseudomonoid in derivable categories. The identity functor $Id : V_0 \to V$ is not left derivable, since it does not preserve $Q$-objects; but it is \emph{right} derivable, since we took all objects in $V$ to be $R$-objects (ignoring the fibrant objects in the model structure on $V$). Of course $Id$ is [[strong monoidal functor|strong monoidal]], and this monoidality constraint can be expressed as a square in the [[double category]] of (\hyperlink{Shulman11}{Shulman 11}) whose vertical arrows are left derivable functors and whose horizontal arrows are right derivable functors; moreover the axioms on a [[monoidal functor]] may be expressed using products and double-categorical pasting in this double category. Therefore, it is all preserved by the double pseudofunctor $Ho$; but $Ho(Id) = \gamma : V \to Ho(V)$. The only thing that is not visible to the double category is the invertibility of the monoidal constraint, and hence this is not preserved by the double pseudofunctor; thus $\gamma$ is only [[lax monoidal functor|lax monoidal]]. \end{proof} \hypertarget{explicitly}{}\paragraph*{{Explicitly}}\label{explicitly} \begin{prop} \label{MonoidalStructureOnHomotopyCategoryOfMonoidalModelCategory}\hypertarget{MonoidalStructureOnHomotopyCategoryOfMonoidalModelCategory}{} Let $(\mathcal{C}, \otimes, 1)$ be a [[monoidal model category]] with cofibrant [[tensor unit]]. Then the [[left derived functor]] $\otimes^L$ of the tensor product exists \begin{displaymath} \itexarray{ \mathcal{C}_c\times \mathcal{C}_c &\overset{\otimes}{\longrightarrow}& \mathcal{C}_c \\ {}^{\mathllap{\gamma \times \gamma}}\downarrow &\swArrow_{\mu^{-1}}& \downarrow^{\mathrlap{\gamma}} \\ Ho(\mathcal{C})\times Ho(\mathcal{C}) &\overset{\otimes^L}{\longrightarrow}& Ho(\mathcal{C}) } \end{displaymath} and makes the [[homotopy category of a model category|homotopy category]] into a [[monoidal category]] $(Ho(\mathcal{C}), \otimes^L, \gamma(1))$. Moreover, the [[localization]] functor \begin{displaymath} \gamma \;\colon\; (\mathcal{C}_c, \otimes, 1) \longrightarrow (Ho(\mathcal{C}), \otimes^L , \gamma(1)) \end{displaymath} on the [[category of cofibrant objects]] is a [[strong monoidal functor]] with structure morphism the inverse of the above natural isomorpmism \begin{displaymath} \mu_{X,Y} \;\colon\; \gamma(X)\otimes^L \gamma(Y) \longrightarrow \gamma(X \otimes Y) \,. \end{displaymath} \end{prop} \begin{proof} For the [[left derived functor]] (\href{Introduction+to+Stable+homotopy+theory+--+P#LeftAndRightDerivedFunctorsOnModelCategories}{def.}) of the tensor product \begin{displaymath} \otimes \; \mathcal{C}\times \mathcal{C} \longrightarrow \mathcal{C} \end{displaymath} to exist, it is sufficient that its restriction to the subcategory \begin{displaymath} (\mathcal{C} \times \mathcal{C})_c \simeq \mathcal{C}_c \times \mathcal{C}_c \end{displaymath} of cofibrant objects preserves acyclic cofibrations ([[Ken Brown's lemma]], \href{Introduction+to+Stable+homotopy+theory+--+P#KenBrownLemma}{here}). Every morphism $(f,g)$ in the [[product category]] $\mathcal{C}_{c}\times \mathcal{C}_{c}$ may be written as a composite of a pairing with an identity morphisms \begin{displaymath} (f,g) \;\colon\; (c_1, d_1) \overset{(id_{c_1},g)}{\longrightarrow} (c_1,d_2) \overset{(f,id_{c_2})}{\longrightarrow} (c_2,d_2) \,. \end{displaymath} Now since the [[pushout product]] (with respect to tensor product) with the initial morphism $(\ast \to c_1)$ is equivalently the tensor product \begin{displaymath} (\ast \to c_1) \Box_{\otimes} g \;\simeq\; id_{c_1} \otimes g \end{displaymath} and \begin{displaymath} f \Box_{\otimes} (\ast \to c_2) \;\simeq\; f \otimes id_{c_2} \end{displaymath} the [[pushout-product axiom]] (def. \ref{MonoidalModelCategory}) implies that on the subcategory of cofibrant objects the functor $\otimes$ preserves acyclic cofibrations. (This is why one speaks of a \emph{[[Quillen bifunctor]]}, see also \hyperlink{Hovey99}{Hovey 99, prop. 4.3.1}). Hence $\otimes^L$ exists. By the same decomposition and using the [[universal property]] of the [[localization]] of a category (\href{Introduction+to+Stable+homotopy+theory+--+P#HomotopyCategoryOfACategoryWithWeakEquivalences}{def.}) one finds that for $\mathcal{C}$ and $\mathcal{D}$ any two [[categories with weak equivalences]] (\href{Introduction+to+Stable+homotopy+theory+--+P#CategoryWithWeakEquivalences}{def.}) then the [[localization]] of their [[product category]] is the product category of their localizations: \begin{displaymath} (\mathcal{C} \times \mathcal{D})[(W_{\mathcal{C}} \sqcup W_{\mathcal{D}})^{-1}] \simeq (\mathcal{C}[W^{-1}_{\mathcal{C}}]) \times (\mathcal{D}[W^{-1}_{\mathcal{D}}]) \,. \end{displaymath} With this, the [[universal property]] as a [[localization]] (\href{Introduction+to+Stable+homotopy+theory+--+P#HomotopyCategoryOfACategoryWithWeakEquivalences}{def.}) of the [[homotopy category of a model category]] (\href{Introduction+to+Stable+homotopy+theory+--+P#UniversalPropertyOfHomotopyCategoryOfAModelCategory}{thm.}) induces [[associators]]: Let \begin{displaymath} \itexarray{ \mathcal{C}_c \times \mathcal{C}_c \times \mathcal{C}_c &\overset{((-)\otimes(-))\otimes (-)}{\longrightarrow}& \mathcal{C} \\ {}^{\mathllap{\gamma_{\mathcal{C} \times \mathcal{C} \times \mathcal{C}}}}\downarrow &\swArrow_{\eta}& \downarrow^{\mathrlap{\gamma_{\mathcal{C}}}} \\ Ho(\mathcal{C}) \times Ho(\mathcal{C}) \times Ho(\mathcal{C}) &\overset{((-)\otimes^L(-))\otimes^L (-)}{\longrightarrow}& Ho(\mathcal{C}) } \;\;\;\,,\;\;\;\;\; \itexarray{ \mathcal{C}_c \times \mathcal{C}_c \times \mathcal{C}_c &\overset{ (-) \otimes ( (-) \otimes (-) ) }{\longrightarrow}& \mathcal{C} \\ {}^{\mathllap{\gamma_{\mathcal{C} \times \mathcal{C} \times \mathcal{C}}}}\downarrow &\swArrow_{\eta'}& \downarrow^{\mathrlap{\gamma_{\mathcal{C}}}} \\ Ho(\mathcal{C}) \times Ho(\mathcal{C}) \times Ho(\mathcal{C}) &\overset{ (-) \otimes^L ( (-) \otimes^L (-) ) }{\longrightarrow}& Ho(\mathcal{C}) } \end{displaymath} be the [[natural isomorphism]] exhibiting the [[derived functors]] of the two possible tensor products of three objects, as shown at the top. By pasting the second with the [[associator]] natural isomorphism of $\mathcal{C}$ we obtain another such factorization for the first, as shown on the left below, \begin{displaymath} (\star) \;\;\;\;\;\; \itexarray{ \mathcal{C}_c \times \mathcal{C}_c \times \mathcal{C}_c &\overset{((-)\otimes(-))\otimes (-)}{\longrightarrow}& \mathcal{C} \\ {}^{\mathllap{=}}\downarrow &\swArrow_{\alpha}& \downarrow^{\mathrlap{=}} \\ \mathcal{C}_c \times \mathcal{C}_c \times \mathcal{C}_c &\overset{ (-) \otimes ( (-) \otimes (-) ) }{\longrightarrow}& \mathcal{C} \\ {}^{\mathllap{\gamma_{\mathcal{C} \times \mathcal{C} \times \mathcal{C}}}}\downarrow &\swArrow_\eta& \downarrow^{\mathrlap{\gamma_{\mathcal{C}}}} \\ Ho(\mathcal{C}) \times Ho(\mathcal{C}) \times Ho(\mathcal{C}) &\overset{ (-) \otimes^L ( (-) \otimes^L (-) ) }{\longrightarrow}& Ho(\mathcal{C}) } \;\;\;\;\;\; \simeq \;\;\;\;\;\; \itexarray{ \mathcal{C}_c \times \mathcal{C}_c \times \mathcal{C}_c &\overset{((-)\otimes(-))\otimes (-)}{\longrightarrow}& \mathcal{C} \\ {}^{\mathllap{\gamma_{\mathcal{C} \times \mathcal{C} \times \mathcal{C}}}}\downarrow &\swArrow_{\eta'}& \downarrow^{\mathrlap{\gamma_{\mathcal{C}}}} \\ Ho(\mathcal{C}) \times Ho(\mathcal{C}) \times Ho(\mathcal{C}) &\overset{((-)\otimes^L(-))\otimes^L (-)}{\longrightarrow}& Ho(\mathcal{C}) \\ {}^{\mathllap{=}}\downarrow &\swArrow_{\alpha^L}& \downarrow^{\mathrlap{=}} \\ Ho(\mathcal{C})\times Ho(\mathcal{C})\times Ho(\mathcal{C}) &\underset{(-)\otimes^L((-)\otimes^L (-))}{\longrightarrow}& Ho(\mathcal{C}) } \end{displaymath} and hence by the [[universal property]] of the factorization through the derived functor, there exists a unique natural isomorphism $\alpha^L$ such as to make this composite of natural isomorphisms equal to the one shown on the right. Hence the [[pentagon identity]] satisfied by $\alpha$ implies a pentagon identity for $\alpha^L$, and so $\alpha^L$ is an [[associator]] for $\otimes^L$. The above equation on pasting composites of [[natural isomorphism]] is equivalently just the coherence law for a monoidal functor: \begin{displaymath} \itexarray{ (\gamma(X) \otimes^L \gamma(Y)) \otimes^L \gamma(Z) &\overset{\alpha^L_{\gamma(X), \gamma(Y), \gamma(Z)}}{\longrightarrow}& \gamma(X) \otimes^L (\gamma(Y) \otimes^L \gamma(Z)) \\ {}^{\mathllap{\eta'}}\uparrow && \uparrow^{\mathrlap{\eta}} \\ \gamma( (X \otimes Y) \otimes Z ) &\underset{\gamma(\alpha)}{\longrightarrow}& \gamma(X \otimes (Y \otimes Z)) } \,. \end{displaymath} \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{classical_homotopy_theory}{}\subsubsection*{{Classical homotopy theory}}\label{classical_homotopy_theory} \begin{itemize}% \item A [[nice category of spaces|nice category of topological spaces]] with cartesian product and the [[classical model structure on topological spaces]]. \item The category of [[simplicial sets]] with cartesian product and the [[classical model structure on simplicial sets]]. \item The [[classical model structure on pointed topological spaces]] or pointed simplicial sets with the [[smash product]] of pointed objects. \end{itemize} \hypertarget{SimplicialPresheaves}{}\subsubsection*{{Simplicial presheaves}}\label{SimplicialPresheaves} If the underlying [[site]] has [[finite product]], then both the injective and the projective, the global and the local [[model structure on simplicial presheaves]] becomes a (Cartesian) [[monoidal model category]] with respect to the standard [[closed monoidal structure on presheaves]]. See at \emph{[[model structure on simplicial presheaves]]} the section \emph{\href{https://ncatlab.org/nlab/show/model+structure+on+simplicial+presheaves#MonoidalStructure}{Closed monoidal structure}}. \hypertarget{homological_algebra_and_stable_homotopy_theory}{}\subsubsection*{{Homological algebra and stable homotopy theory}}\label{homological_algebra_and_stable_homotopy_theory} \begin{itemize}% \item The category of [[chain complex]]es with the usual [[tensor product]] of chain complexes and the [[model structure on chain complexes|projective model structure]]. \end{itemize} With respect to a [[symmetric monoidal smash product of spectra]]: \begin{itemize}% \item the [[model structure on symmetric spectra]] \item the [[model structure on orthogonal spectra]] \item the [[model structure for excisive functors]] \end{itemize} (\hyperlink{SchwedeShipley00}{Schwede-Shipley 00}, \hyperlink{MMSS00}{MMSS 00, theorem 12.1 (iii) with prop. 12.3}) The standard example of a monoidal model category whose unit is not cofibrant is the category of EKMM S-modules. \hypertarget{categorical_model_structures}{}\subsubsection*{{Categorical model structures}}\label{categorical_model_structures} \begin{itemize}% \item The category [[Cat]] with cartesian product and the [[folk model structure]]. \item The category [[Gray]] of [[strict 2-category|strict 2-categories]] with the [[Gray tensor product]] and the [[model structure on 2-categories|Lack model structure]]. \end{itemize} \hypertarget{model_structure_on_objects}{}\subsubsection*{{Model structure on $G$-objects}}\label{model_structure_on_objects} \begin{udef} Let $\mathcal{E}$ be a [[category]] equipped with the structure of \begin{itemize}% \item a [[closed monoidal category|closed]] [[symmetric monoidal category]]; \item a [[monoidal model category]]; \end{itemize} such that \begin{itemize}% \item the model structure is [[cofibrantly generated model category|cofibrantly generated]]; \item the tensor unit $I$ is cofibrant. \end{itemize} \end{udef} \begin{uprop} Under these conditions there is for each [[finite group]] $G$ the structure of a [[monoidal model category]] on the category $\mathcal{E}^{\mathbf{B}G}$ of objects in $\mathcal{E}$ equipped with a $G$-[[action]], for which the [[forgetful functor]] \begin{displaymath} \mathcal{E}^{\mathbf{B}G} \to \mathcal{E} \end{displaymath} preserves and reflects fibrations and weak equivalences. \end{uprop} See for instance (\hyperlink{BergerMoerdijkResolution}{BergerMoerdijk 2.5}). \hypertarget{model_structure_on_monoids}{}\subsubsection*{{Model structure on monoids}}\label{model_structure_on_monoids} See [[model structure on monoids in a monoidal model category]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[monoidal localization]] \item [[monoidal Quillen adjunction]] \item [[model structure on monoids in a monoidal model category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A textbook reference is \begin{itemize}% \item [[Mark Hovey]], chapter 4 of \emph{Model Categories} Mathematical Surveys and Monographs, Volume 63, AMS (1999) (\href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/hovey-model-cats.pdf}{pdf}, \href{http://books.google.co.uk/books?id=Kfs4uuiTXN0C&printsec=frontcover}{Google books}) \end{itemize} Some relevant homotopy category background is in \begin{itemize}% \item [[Mike Shulman]], \emph{Comparing composites of left and right derived functors}, New York Journal of Mathematics Volume 17 (2011) 75-125 (\href{http://arxiv.org/abs/0706.2868}{arXiv:0706.2868}, \href{http://nyjm.albany.edu/j/2011/17-5.html}{publisher}) \end{itemize} The monoidal structures for a [[symmetric monoidal smash product of spectra]] are due to \begin{itemize}% \item [[Stefan Schwede]], [[Brooke Shipley]], \emph{Algebras and modules in monoidal model categories} Proc. London Math. Soc. (2000) 80(2): 491-511 (\href{http://www.math.uic.edu/~bshipley/monoidal.pdf}{pdf}) \item [[Michael Mandell]], [[Peter May]], [[Stefan Schwede]], [[Brooke Shipley]], part III of \emph{[[Model categories of diagram spectra]]}, Proceedings London Mathematical Society Volume 82, Issue 2, 2000 (\href{http://www.math.uchicago.edu/~may/PAPERS/mmssLMSDec30.pdf}{pdf}, \href{http://plms.oxfordjournals.org/content/82/2/441.short?rss=1&ssource=mfc}{publisher}) \end{itemize} Further variation of the axiomatics is discussed in \begin{itemize}% \item [[Michael Batanin]], [[Clemens Berger]], \emph{Homotopy theory for algebras over polynomial monads} (\href{https://arxiv.org/abs/1305.0086}{arXiv:1305.0086}) \end{itemize} The monoidal model structure on $\mathcal{E}^{\mathbf{B}G}$ is discussed for instance in \begin{itemize}% \item [[Clemens Berger]], [[Ieke Moerdijk]], \emph{The Boardman-Vogt resolution of operads in monoidal model categories}, Topology 45 (2006), 807--849. \end{itemize} Relation to [[symmetric monoidal (infinity,1)-categories]] (in particular, that every locally presentable symmetric monoidal $(\infty,1)$-category arises from a symmetric monoidal model category) is discussed in \begin{itemize}% \item [[Thomas Nikolaus]], [[Steffen Sagave]], \emph{Presentably symmetric monoidal infinity-categories are represented by symmetric monoidal model categories} (\href{http://arxiv.org/abs/1506.01475}{arXiv:1506.01475}) \end{itemize} [[!redirects monoidal model categories]] [[!redirects monoidal model structure]] [[!redirects monoidal model structures]] [[!redirects symmetric monoidal model structure]] [[!redirects symmetric monoidal model structures]] [[!redirects symmetric monoidal model category]] [[!redirects symmetric monoidal model categories]] \end{document}