\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{monoidal monad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{tensorial_strengths_and_commutative_monads}{Tensorial strengths and commutative monads}\dotfill \pageref*{tensorial_strengths_and_commutative_monads} \linebreak \noindent\hyperlink{from_monoidal_monads_to_commutative_monads}{From monoidal monads to commutative monads}\dotfill \pageref*{from_monoidal_monads_to_commutative_monads} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \textbf{monoidal monad} is a [[monad]] in the [[2-category]] of [[monoidal category|monoidal categories]], [[lax monoidal functor|lax monoidal functors]], and monoidal transformations. \end{defn} \begin{remark} \label{}\hypertarget{}{} The notion of monoidal monad is equivalent to a suitable general notion of \emph{[[commutative monad]]} (see def. \ref{CommutativeMonad} below), as discussed at [[commutative algebraic theory]]. We explore this connection below. \end{remark} \hypertarget{tensorial_strengths_and_commutative_monads}{}\subsection*{{Tensorial strengths and commutative monads}}\label{tensorial_strengths_and_commutative_monads} As a preliminary, let $V$ be a [[monoidal category]]. We say a functor $T \colon V \to V$ is \textbf{strong} if there are given left and right [[tensorial strength|tensorial strengths]] \begin{displaymath} \tau_{A, B} \colon A \otimes T(B) \to T(A \otimes B) \end{displaymath} \begin{displaymath} \, \end{displaymath} \begin{displaymath} \sigma_{A, B} \colon T(A) \otimes B \to T(A \otimes B). \end{displaymath} which are suitably compatible with one another. The full set of [[coherence]] conditions may be summarized by saying $T$ preserves the two-sided monoidal [[action]] of $V$ on itself, in an appropriate [[2-category theory|2-categorical]] sense. More precisely: the two-sided action of $V$ on itself is a [[lax functor]] of 2-categories \begin{displaymath} \tilde{V} \colon B V \times (B V)^{op} \to Cat \end{displaymath} ($B V$ is the one-object 2-category associated with a monoidal category $V$, and $(B V)^{op}$ is the same 2-category but with 1-cell composition (= tensoring) in reverse order), and the two-sided strength means we have a structure of [[lax natural transformation]] $\tilde{V} \to \tilde{V}$. \begin{remark} \label{}\hypertarget{}{} In the setting where $V$ is \emph{[[symmetric monoidal category|symmetric]]} monoidal, we will assume that the left and right strengths $\tau$ and $\sigma$ are related by the symmetry in the obvious way, by a commutative square \begin{displaymath} \itexarray{ A \otimes T(B) & \stackrel{\tau_{A, B}}{\to} & T(A \otimes B) \\ ^\mathllap{c} \downarrow & & \downarrow^\mathrlap{T(c)} \\ T(B) \otimes A & \underset{\sigma_{B, A}}{\to} & T(B \otimes A) } \end{displaymath} where the $c$`s are instances of the symmetry isomorphism. \end{remark} There is a category of strong functors $V \to V$, where the morphisms are transformations $\lambda \colon S \to T$ which are compatible with the strengths in the obvious sense. Under composition, this is a strict monoidal category. \begin{defn} \label{StrongMonad}\hypertarget{StrongMonad}{} Monoids in this monoidal category are called \textbf{[[strong monads]]}. \end{defn} \begin{defn} \label{CommutativeMonad}\hypertarget{CommutativeMonad}{} A [[strong monad]] $(T \colon V \to V, m \colon T T \to T, u: 1 \to T)$ (def. \ref{StrongMonad}) is a \textbf{[[commutative monad]]} if there is an equality of [[natural transformations]] $\alpha = \beta$ where \begin{itemize}% \item $\alpha$ is the composite \begin{displaymath} T A \otimes T B \stackrel{\sigma_{A, T B}}{\to} T(A \otimes T B) \stackrel{T(\tau_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B). \end{displaymath} \item $\beta$ is the composite \begin{displaymath} T A \otimes T B \stackrel{\tau_{T A, B}}{\to} T(T A \otimes B) \stackrel{T(\sigma_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B). \end{displaymath} \end{itemize} \end{defn} \hypertarget{from_monoidal_monads_to_commutative_monads}{}\subsection*{{From monoidal monads to commutative monads}}\label{from_monoidal_monads_to_commutative_monads} Let $(T \colon V \to V, u \colon 1 \to T, m \colon T T \to T)$ be a monoidal monad, with structural constraints on the underlying functor denoted by \begin{displaymath} \alpha_{A, B} \colon T(A) \otimes T(B) \to T(A \otimes B), \qquad \iota = u I: I \to T(I). \end{displaymath} Define [[tensorial strength|strengths]] on both the left and the right by \begin{displaymath} \tau_{A, B} = (A \otimes T(B) \stackrel{u A \otimes 1}{\to} T(A) \otimes T(B) \stackrel{\alpha_{A, B}}{\to} T(A \otimes B)), \end{displaymath} \begin{displaymath} \, \end{displaymath} \begin{displaymath} \sigma_{A, B} = (T(A) \otimes B \stackrel{1 \otimes u B}{\to} T(A) \otimes T(B) \stackrel{\alpha_{A, B}}{\to} T(A \otimes B)). \end{displaymath} \begin{prop} \label{}\hypertarget{}{} $(m \colon T T \to T, u \colon 1 \to T)$ is a commutative monad. \end{prop} \begin{proof} In fact, the two composites \begin{displaymath} T A \otimes T B \stackrel{\sigma_{A, T B}}{\to} T(A \otimes T B) \stackrel{T(\tau_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B) \end{displaymath} \begin{displaymath} \, \end{displaymath} \begin{displaymath} T A \otimes T B \stackrel{\tau_{T A, B}}{\to} T(T A \otimes B) \stackrel{T(\sigma_{A, B})}{\to} T T(A \otimes B) \stackrel{m(A \otimes B)}{\to} T(A \otimes B) \end{displaymath} are both equal to $\alpha_{A, B}$. We show this for the first composite; the proof is similar for the second. If $\alpha_T$ denotes the monoidal constraint for $T$ and $\alpha_{T T}$ the constraint for the composite $T T$, then by definition $\alpha_{T T}$ is the composite given by \begin{displaymath} T T X \otimes T T Y \stackrel{\alpha_T T}{\to} T(T X \otimes T Y) \stackrel{T\alpha_T}{\to} T T(X \otimes Y) \end{displaymath} and so, using the properties of monoidal monads, we have a commutative diagram \begin{displaymath} \itexarray{ & & T T X \otimes T Y & \stackrel{\alpha_T}{\to} & T(T X \otimes Y) \\ & ^\mathllap{u \otimes 1} \nearrow & \downarrow^\mathrlap{1 \otimes T u} & & \downarrow^\mathrlap{T(1 \otimes u)} \\ T X \otimes T Y & \stackrel{u \otimes T u}{\to} & T T X \otimes T T Y & \stackrel{\alpha_T T}{\to} & T(T X \otimes T Y) \\ & ^\mathllap{1} \searrow & \downarrow^\mathrlap{m \otimes m} & \searrow^\mathrlap{\alpha_{T T}} & \downarrow^\mathrlap{T\alpha_T} \\ & & T X \otimes T Y & & T T(X \otimes Y) \\ & & & ^\mathllap{\alpha_T} \searrow & \downarrow^\mathrlap{m} \\ & & & & T(X \otimes Y) } \end{displaymath} which completes the proof. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Gavin J. Seal, \emph{Tensors, monads and actions} (\href{http://arxiv.org/abs/1205.0101}{arXiv:1205.0101}) \end{itemize} [[!redirects monoidal monads]] \end{document}