\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{motivic Galois group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{motivic_cohomology}{}\paragraph*{{Motivic cohomology}}\label{motivic_cohomology} [[!include motivic cohomology - contents]] \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{mixed_motivic_galois_groups}{(Mixed) Motivic Galois groups}\dotfill \pageref*{mixed_motivic_galois_groups} \linebreak \noindent\hyperlink{noris_motivic_galois_group}{Nori's Motivic Galois group}\dotfill \pageref*{noris_motivic_galois_group} \linebreak \noindent\hyperlink{ayoubs_motivic_galois_group}{Ayoub's Motivic Galois group}\dotfill \pageref*{ayoubs_motivic_galois_group} \linebreak \noindent\hyperlink{comparison}{Comparison}\dotfill \pageref*{comparison} \linebreak \noindent\hyperlink{noncommutative_motivic_galois_groups}{Noncommutative Motivic Galois groups}\dotfill \pageref*{noncommutative_motivic_galois_groups} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relation_to_grothendieckteichmller_group}{Relation to Grothendieck-Teichm\"u{}ller group}\dotfill \pageref*{relation_to_grothendieckteichmller_group} \linebreak \noindent\hyperlink{in_quantum_field_theory}{In quantum field theory}\dotfill \pageref*{in_quantum_field_theory} \linebreak \noindent\hyperlink{grothendiecks_yoga_remarks}{Grothendieck's Yoga Remarks}\dotfill \pageref*{grothendiecks_yoga_remarks} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A slight variant $\tilde Mot_{num}(k,\mathbb{Q})$ of the [[category of pure motives|category of pure]] [[numerical motives]] $Mot_{num}(k,\mathbb{Q})$ is a [[Tannakian category]] [[equivalence of categories|equivalent]] to a [[category of representations]] of some [[algebraic group]] $GMot_k$: \begin{displaymath} Mot_{num}(k,\mathbb{Q}) \simeq Rep(GMot_k) \,. \end{displaymath} In the sense of [[Galois theory]], that [[algebraic group]] is called the \emph{motivic Galois group} for pure motives. There is also a motivic Galois group of mixed motives. That group is, or is closely related to, the group of algebraic \emph{[[periods]]}, and as such is related to expressions appearing in [[deformation quantization]] and in [[renormalization]] in [[quantum field theory]], whence it is also sometimes referred to as the \emph{[[cosmic Galois group]]}. See there for more on this. \hypertarget{mixed_motivic_galois_groups}{}\subsection*{{(Mixed) Motivic Galois groups}}\label{mixed_motivic_galois_groups} \hypertarget{noris_motivic_galois_group}{}\subsubsection*{{Nori's Motivic Galois group}}\label{noris_motivic_galois_group} [[M. Levine]], \emph{Mixed motives.} (3.3 Motives by Tannakian formalism) In, Handbook of K-theory, Vol. 1, Friedlander and Grayson, eds., p. 429--521, Springer Verlag (2005).(\href{https://www.uni-due.de/~bm0032/publ/MixMotKHB.pdf}{pdf}). \hypertarget{ayoubs_motivic_galois_group}{}\subsubsection*{{Ayoub's Motivic Galois group}}\label{ayoubs_motivic_galois_group} \begin{itemize}% \item [[Joseph Ayoub]], \emph{L'alg\`e{}bre de Hopf et le groupe de Galois motiviques d'un corps de caract\'e{}ristique nulle I}, (\href{http://user.math.uzh.ch/ayoub/PDF-Files/GaloisMotivic-1.pdf}{pdf}). \item [[Joseph Ayoub]], \emph{L'alg\`e{}bre de Hopf et le groupe de Galois motiviques d'un corps de caract\'e{}ristique nulle II}, (\href{http://user.math.uzh.ch/ayoub/PDF-Files/GaloisMotivic-2.pdf}{pdf}). \item [[Joseph Ayoub]], \emph{From motives to comodules over the motivic Hopf algebra}, (\href{http://user.math.uzh.ch/ayoub/PDF-Files/Motivic-Hopf-3.pdf}{pdf}). \end{itemize} [[Joseph Ayoub]], \href{https://www.youtube.com/watch?v=f4vgBfPkiWg}{Lecture 1},\href{https://www.youtube.com/watch?v=JHSdJ28iED0}{Lecture 2},\href{https://www.youtube.com/watch?v=j967ozw9nXU}{Lecture 3}, The lectures were held within the framework of the (Junior) Hausdorff Trimester Program Topology and the Workshop: Interactions between operads and motives. \href{http://mathoverflow.net/questions/254341/derived-version-of-equivalence-between-motives-and-representations-of-motivic-ga}{Mathoverflow, Derived version of equivalence between motives and representations of Motivic galois groups?}. \hypertarget{comparison}{}\subsubsection*{{Comparison}}\label{comparison} \emph{Ayoub's weak Tannakian formalism applied to the Betti realization for Voevodsky motives yields a pro-algebraic group, a candidate for the motivic Galois group. In particular, each Voevodsky motive gives rise to a representation of this group. On the other hand Nori motives are just representations of Nori's motivic Galois group.} These groups are isomorphic. \begin{itemize}% \item [[Utsav Choudhury]], [[Martin Gallauer Alves de Souza]], \emph{An isomorphism of motivic galois groups}, (\href{https://arxiv.org/pdf/1410.6104v2.pdf}{arXiv:1410.6104}). \end{itemize} \emph{the existence of a motivic t-structure (which renders the Betti realization t-exact) would imply the isomorphism of motivic Galois groups.} \begin{itemize}% \item [[J.P.Pridham]], \emph{Tannaka duality for enhanced triangulated categories}, (\href{https://arxiv.org/pdf/1309.0637v4.pdf}{arXiv:1309.0637}). \end{itemize} \hypertarget{noncommutative_motivic_galois_groups}{}\subsection*{{Noncommutative Motivic Galois groups}}\label{noncommutative_motivic_galois_groups} \begin{itemize}% \item [[Matilde Marcolli]], [[Gonçalo Tabuada]] \emph{Unconditional noncommutative motivic galois groups},(\href{https://arxiv.org/pdf/1112.5422.pdf}{arXiv:1112.5422}). \item [[Matilde Marcolli]], [[Gonçalo Tabuada]] \emph{Noncommutative numerical motives, Tannakian structures, and motivic Galois groups.} J. Eur. Math. Soc. 18 (2016), 623-655. doi: 10.4171/JEMS/598 \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} A quick survey is in \begin{itemize}% \item [[Bruno Kahn]], \emph{Motivic Galois groups} (\href{http://www.math.jussieu.fr/~kahn/preprints/PaloAlto2.pdf}{pdf}) \end{itemize} More is in \begin{itemize}% \item [[Jean-Pierre Serre]], \emph{Propri\'e{}t\'e{}s conjecturales des groups de Galois motiviques et des repr\'e{}sentations l-adiques}, in U. Jannsen, S. Kleiman, J.-P. Serre (eds) \emph{Motives}, Proceedings of Symposia in Pure Mathematics, AMS, vol. 55, part 1, 377 - 400 (1994). \item [[Yves André]], \emph{Groupes de Galois motiviques et p\'e{}riodes}, (\href{http://www.bourbaki.ens.fr/TEXTES/1104.pdf}{pdf}), S\'e{}minaire Bourbaki, 68\`e{}me ann\'e{}e, 2015-2016 n\textdegree{}1104. \item AB Goncharov, \emph{Polylogarithms and Motivic galois groups}, (\href{http://users.math.yale.edu/users/ag727/polylog.pdf}{pdf}). \item R Sujatha, \emph{Motives from a categorical point of view}, (\href{http://www.math.tifr.res.in/~sujatha/ihes.pdf}{pdf}). \item [[Minhyong Kim]], \emph{(Videos) Motivic fundamental groups and Diophantine geometry}, \href{https://www.youtube.com/watch?v=qiR8un1mwIA}{I}, \href{https://www.youtube.com/watch?v=SZLE_dqf5lk}{II}. \item Annette Huber, Stefan M\"u{}ller-Stach, \emph{On the relation between Nori motives and Kontsevich periods}, \href{http://arxiv.org/abs/1105.0865}{arxiv/1105.0865} \end{itemize} \begin{quote}% We show that the spectrum of Kontsevich's algebra of formal periods is a torsor under the motivic Galois group for mixed motives over the rational numbers. This assertion is stated without proof by Kontsevich and originally due to Nori. In a series of appendices, we also provide the necessary details on Nori's category of motives. \end{quote} \href{http://mathoverflow.net/questions/127633/what-are-the-possible-motivic-galois-groups-over-mathbb-q?rq=1}{Mathoverflow, What are the possible motivic Galois groups over Q ?}. \href{http://mathoverflow.net/questions/71660/why-would-the-category-of-motives-be-tannakian}{Mathoverflow, Why would the category of Motives be Tannakian?}. \hypertarget{relation_to_grothendieckteichmller_group}{}\subsubsection*{{Relation to Grothendieck-Teichm\"u{}ller group}}\label{relation_to_grothendieckteichmller_group} The [[Grothendieck-Teichmüller group]] is supposed to be a [[quotient]] of the motivic Galois group. This is a conjecture due to (\hyperlink{Drinfeld91}{Drinfeld 91}). \begin{itemize}% \item [[Vladimir Drinfel'd]], \emph{On quasi-triangular Quasi-Hopf algebras and a group closely related with $Gal(\overline{\mathbb{Q}/\mathbb{Q}})$, Leningrad Math. J., 2 (1991), 829 - 860.} \end{itemize} \hypertarget{in_quantum_field_theory}{}\subsubsection*{{In quantum field theory}}\label{in_quantum_field_theory} A conjecture that the motivic Galois group naturally acts on the space of [[deformation quantizations]] of [[free field theories]] is in section 5 of \begin{itemize}% \item [[Maxim Kontsevich]], \emph{Operads and motives in deformation quantization}, Lett. Math. Phys.48:35-72, 1999 (\href{http://arxiv.org/abs/math/9904055}{arXiv:math/9904055}) \end{itemize} Regarding that this approach is related to Hodge theory periods, and that QFT can be attacked using the Batalin-Vilkovsky formalism, Barannikov has developed further the Batalin-Vilkovisky geometry and related Hodge theory in a direction which is probably a ground for better understanding of motivic Galois group as well. An analogous statement, that a motivic Galois group naturally acts on structures in [[renormalization]] is in \begin{itemize}% \item [[Alain Connes]], [[Matilde Marcolli]], \emph{Renormalization and motivic Galois theory}, \href{http://arxiv.org/abs/math/0409306}{arXiv:math/0409306} \end{itemize} \begin{itemize}% \item [[Alain Connes]], \emph{Symetries Galoisiennes et Renormalisation}, \href{https://arxiv.org/abs/math/0211199}{arXiv:math/0211199} \end{itemize} For more along these lines see at \emph{[[cosmic Galois group]]}. \hypertarget{grothendiecks_yoga_remarks}{}\subsubsection*{{Grothendieck's Yoga Remarks}}\label{grothendiecks_yoga_remarks} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Galois theory]] \item [[motive]] \item [[cosmic Galois group]], [[Grothendieck-Teichmüller group]] \end{itemize} [[!redirects motivic Galois groups]] \end{document}