\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{multicategory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_components}{In components}\dotfill \pageref*{in_components} \linebreak \noindent\hyperlink{in_terms_of_cartesian_monads}{In terms of cartesian monads}\dotfill \pageref*{in_terms_of_cartesian_monads} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_operads}{Relation to operads}\dotfill \pageref*{relation_to_operads} \linebreak \noindent\hyperlink{relation_to_monoidal_categories}{Relation to monoidal categories}\dotfill \pageref*{relation_to_monoidal_categories} \linebreak \noindent\hyperlink{examples_and_special_cases}{Examples and special cases}\dotfill \pageref*{examples_and_special_cases} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Recall that a [[category]] consists of a collection of [[morphisms]] each having a single [[object]] as source or input, and a single object as target or output, together with laws for composition and identity obeying associativity and identity axioms. A \emph{multicategory} is like a category, except that one allows multiple inputs and a single output. Another term for \emph{multicategory} is \emph{coloured [[operad]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_components}{}\subsubsection*{{In components}}\label{in_components} A \textbf{multicategory} $C$ consists of \begin{itemize}% \item A collection of \emph{objects}, $C_0$. \item A collection of \emph{multimorphisms}, $C_1$. \item A source map $s: C_1 \to (C_0)*$ to the collection of finite, possibly empty [[list]]s of objects (where $(C_0)*$ is the [[free monoid]] generated by $C_0$), and a target map $t: C_1 \to C_0$. We write $f: c_1, \ldots, c_n \to c$ to indicate the source and target of a multimorphism $f$. \item Identity and composition laws. The identity law is a map $1_{-}: C_0 \to C_1$ where $1_c: c \to c$. The composition law assigns, to each $f: c_1, \ldots, c_n \to c$ together with an $n$-tuple $\langle f_i: \vec{c}_i \to c_i: i = 1, \ldots, n \rangle$, a composite\begin{displaymath} f \circ (f_1, \ldots, f_n): \vec{c}_1, \ldots, \vec{c}_n \to c \end{displaymath} where the source is obtained by concatenating lists in the evident way. \end{itemize} These operations are subject to [[associativity]] and [[identity]] axioms which the reader can probably figure out, but see for example (\hyperlink{Leinster}{Leinster, page 35 ff.}), for details. Many people (especially non-category theorists) use the word \emph{multicategory} or the word \emph{colored [[operad]]} to mean what we would call a \emph{[[symmetric multicategory]]} / \emph{[[symmetric operad]]}. These are multicategories equipped with an [[action]] of the [[symmetric group]] $S_n$ on the multimorphisms $c_1, \ldots, c_n \to c$ such that the composition is equivariant with respect to these actions. \hypertarget{in_terms_of_cartesian_monads}{}\subsubsection*{{In terms of cartesian monads}}\label{in_terms_of_cartesian_monads} An efficient abstract method for defining multicategories and related structures is through the formalism of [[cartesian monads]]. For ordinary categories, one uses the identity monad on [[Set]]; for ordinary multicategories, one uses the [[free monoid]] monad $(-)*: Set \to Set$. This is a special case of the yet more general notion of [[generalized multicategory]]. We summarize here how the theory applies to the case of a [[cartesian monad]] $T$ on a category with [[pullbacks]]; see [[generalized multicategory]] for the fully general context. \begin{itemize}% \item First, a \textbf{$T$-span} from $X$ to $Y$ is a [[span]] $p$ from $T X$ to $Y$, that is, a diagram\begin{displaymath} T X \stackrel{p_1}{\leftarrow} P \stackrel{p_2}{\to} Y \end{displaymath} A $T$-span is often written as $p: X ⇸ Y$. \end{itemize} When $T$ is the free monoid monad on $Set$, a $T$-span from $X$ to itself is called a \emph{multigraph} on $X$. \begin{itemize}% \item $T$-spans are the 1-cells of a [[bicategory]]. A 2-cell between $T$-spans $e, f: X ⇸ Y$ is a 2-cell between ordinary spans from $T X$ to $Y$. To horizontally compose $T$-spans $e: X ⇸ Y$ and $f: Y ⇸ Z$, take the ordinary span composite of \begin{displaymath} (T X \stackrel{m X}{\leftarrow} T^2 X \stackrel{T e_1}{\leftarrow} T E \stackrel{T e_2}{\to} T Y) \circ (T Y \stackrel{f_1}{\leftarrow} F \stackrel{f_2}{\to} Z) \end{displaymath} where $m: T^2 \to T$ is the monad multiplication. The identity $T$-span from $X$ to itself is the span \begin{displaymath} T X \stackrel{u X}{\leftarrow} X \stackrel{1_X}{\to} X \end{displaymath} where $u: I \to T$ is the monad unit. The verification of the bicategory axioms uses the cartesianness of $T$ in concert with the corresponding axioms on the bicategory of spans. \item A \emph{$T$-multicategory} is defined to be a [[monad]] in the bicategory of $T$-spans. \end{itemize} When $T$ is the free monoid monad on sets, then a $T$-multicategory is a multicategory as defined above. For more examples and generalizations, see [[generalized multicategory]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_operads}{}\subsubsection*{{Relation to operads}}\label{relation_to_operads} A [[nonpermutative operad|nonpermutative]] (or Stasheff-) [[operad]] in [[Set]] may be defined as an ordinary multicategory with exactly one object. Likewise, a [[symmetric operad]] in any [[symmetric monoidal category]] $V$ is equivalent to a $V$-[[enriched category|enriched]] multicategory with one object. More generally, the notion of \emph{multi-colored [[planar operad]]} is equivalent to that of multicategory, and the notion of \emph{multi-colored [[symmetric operad]]} is equivalent to that of [[symmetric multicategory]]. Fully generally, for each cartesian monad $T$, there is a corresponding notion of $T$-operad, namely a $T$-multicategory whose underlying $T$-span has the form $1 ⇸ 1$. For example, in Batanin's approach to (weak) $\infty$-[[infinity-category|categories]], a [[globular operad]] is a $T$-operad, where $T$ is the free (strict) $\omega$-[[strict omega-category|category]] monad on the category of [[globular set]]s. Ordinary (permutative/symmetric) operads, and their generalization to [[symmetric multicategory|symmetric multicategories]], can also be treated in the framework of [[generalized multicategories]], but they require a framework more general than that of cartesian monads. \hypertarget{relation_to_monoidal_categories}{}\subsubsection*{{Relation to monoidal categories}}\label{relation_to_monoidal_categories} There is a [[faithful functor]] from [[monoidal categories]] to [[multicategories]], given by forming [[representable multicategories|represented multicategories]]. Conversely, to any multicategory $C$ there is an associated (strict) monoidal category $F(C)$, whose objects (respectively, arrows) are [[lists]] of objects (respectively, arrows) of $C$, and where the tensor product in $F(C)$ is given by concatenation. \hypertarget{examples_and_special_cases}{}\subsection*{{Examples and special cases}}\label{examples_and_special_cases} \begin{itemize}% \item [[permutative categories]] with multi-linear functors between them form a multicategory [[PermCat]] \end{itemize} See also the examples at \emph{[[operad]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[multimorphism]] \item [[multifunctor]] \item [[polycategory]] \item [[fibration of multicategories]] \item [[symmetric multicategory]] \item [[generalized multicategory]], [[operad]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Tom Leinster]], \emph{Higher operads, higher categories}, London Math. Soc. Lec. Note Series \textbf{298}, \href{http://arxiv.org/abs/math.CT/0305049}{math.CT/0305049} \end{itemize} [[!redirects multicategories]] [[!redirects pseudomonoidal category]] \end{document}