\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{multiplicative cohomology theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RingAndModuleStructureOnCohomologyGroups}{Ring and module structure on cohomology groups}\dotfill \pageref*{RingAndModuleStructureOnCohomologyGroups} \linebreak \noindent\hyperlink{multiplicative_atiyahhirzebruch_spectral_sequences}{Multiplicative Atiyah-Hirzebruch spectral sequences}\dotfill \pageref*{multiplicative_atiyahhirzebruch_spectral_sequences} \linebreak \noindent\hyperlink{BrownRepresentabilityByRingSpectra}{Brown representability by ring spectra}\dotfill \pageref*{BrownRepresentabilityByRingSpectra} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[cohomology theory]] $E$ is called \emph{multiplicative} if each [[graded module|graded]] [[abelian group|abelian]] $E$-[[cohomology group]] $E^\bullet(X)$ is compatibly equippd with the structure of a [[graded ring]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{PairingOfUnreducedCohomologyTheories}\hypertarget{PairingOfUnreducedCohomologyTheories}{} Let $E_1, E_2, E_3$ be three unreduced [[generalized (Eilenberg-Steenrod) cohomology|generalized cohomology theories]] (\href{generalized+cohomology+theory#GeneralizedCohomologyTheory}{def.}). A \textbf{pairing of cohomology theories} \begin{displaymath} \mu \;\colon\; E_1 \Box E_2 \longrightarrow E_3 \end{displaymath} is a [[natural transformation]] (of functors on $(Top_{CW}^{\hookrightarrow}\times Top_{CW}^{\hookrightarrow})^{op}$) of the form \begin{displaymath} \mu_{n_1,n_2} \;\colon\; E_1^{n_1}(X,A) \otimes E_2^{n_2}(Y,B) \longrightarrow E_3^{n_1 + n_2}(X\times Y \;,\; A\times Y \cup X \times B) \end{displaymath} such that this is compatible with the connecting homomorphisms $\delta_i$ of $E_i$, in that the following are [[commuting squares]] \begin{displaymath} \itexarray{ E_1^{n_1}(A) \otimes E_2^{n_2}(Y,B) &\overset{\delta_1 \otimes id_2}{\longrightarrow}& E_1^{n_1+1}(X,A) \otimes E_2^{n_2}(Y,B) \\ {}^{\mathllap{\mu_{n_1,n_2}}}\downarrow && \downarrow^{\mathrlap{\mu_{n_1+1, n_2}}} \\ \underoverset {E_3^{n_1 + n_2}(A \times Y \cup X \times B , X \times B)} {E_3^{n_1 + n_2}(A \times Y, A \times B)} {\simeq} &\overset{\delta_3}{\longrightarrow}& E_3^{n_1 + n_2+ 1}(X \times Y, A \times B) } \end{displaymath} and \begin{displaymath} \itexarray{ E_1^{n_1}(X,A) \otimes E_2^{n_2}(B) &\overset{(-1)^{n_1} id_1 \otimes \delta_2}{\longrightarrow}& E_1^{n_1+1}(X,A) \otimes E_2^{n_2}(Y,B) \\ {}^{\mathllap{\mu_{n_1,n_2}}}\downarrow && \downarrow^{\mathrlap{\mu_{n_1, n_2 + 1}}} \\ \underoverset {E_3^{n_1 + n_2}(A \times Y \cup X \times B , A \times Y)} {E_3^{n_1 + n_2}(X \times B, A \times B)} {\simeq} &\overset{\delta_3}{\longrightarrow}& E_3^{n_1 + n_2+ 1}(X \times Y, A \times B) } \,, \end{displaymath} where the isomorphisms in the bottom left are the \href{generalized+cohomology+theory##excision}{excision isomorphisms}. \end{defn} \begin{defn} \label{MultiplicativeCohomologyTheory}\hypertarget{MultiplicativeCohomologyTheory}{} An (unreduced) \textbf{multiplicative cohomology theory} is an unreduced [[generalized cohomology theory]] theory $E$ (\href{generalized+cohomology+theory#GeneralizedCohomologyTheory}{def.}) equipped with \begin{enumerate}% \item (external multiplication) a pairing (def. \ref{PairingOfUnreducedCohomologyTheories}) of the form $\mu \;\colon\; E \Box E \longrightarrow E$; \item (unit) an element $1 \in E^0(\ast)$ \end{enumerate} such that \begin{enumerate}% \item ([[associativity]]) $\mu \circ (id \otimes \mu) = \mu \circ (\mu \otimes id)$; \item ([[unitality]]) $\mu(1\otimes x) = \mu(x \otimes 1) = x$ for all $x \in E^n(X,A)$. \end{enumerate} The mulitplicative cohomology theory is called \textbf{commutative} (often considered by default) if in addition \begin{itemize}% \item \textbf{(graded commutativity)} \begin{displaymath} \itexarray{ E^{n_1}(X,A) \otimes E^{n_2}(Y,B) &\overset{(u \otimes v) \mapsto (-1)^{n_1 n_2} (v \otimes u) }{\longrightarrow}& E^{n_2}(Y,B) \otimes E^{n_1}(X,A) \\ {}^{\mathllap{\mu_{n_1,n_2}}}\downarrow && \downarrow^{\mathrlap{\mu_{n_1,n_2}}} \\ E^{n_1 + n_2}( X \times Y , A \times Y \cup X \times B) &\underset{(switch_{(X,A), (Y,B)})^\ast}{\longrightarrow}& E^{n_1 + n_2}( Y \times X , B \times X \cup Y \times A) } \,. \end{displaymath} \end{itemize} Given a multiplicative cohomology theory $(E, \mu, 1)$, its \textbf{[[cup product]]} is the composite of the above external multiplication with pullback along the [[diagonal]] maps $\Delta_{(X,A)} \colon (X,A) \longrightarrow (X\times X, A \times X \cup X \times A)$; \begin{displaymath} (-) \cup (-) \;\colon\; E^{n_1}(X,A) \otimes E^{n_2}(X,A) \overset{\mu_{n_1,n_2}}{\longrightarrow} E^{n_1 + n_2}( X \times X, \; A \times X \cup X \times A) \overset{\Delta^\ast_{(X,A)}}{\longrightarrow} E^{n_1 + n_2}(X, \; A \cup B) \,. \end{displaymath} \end{defn} e.g. (\hyperlink{TamakiKono06}{Tamaki-Kono 06, II.6}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RingAndModuleStructureOnCohomologyGroups}{}\subsubsection*{{Ring and module structure on cohomology groups}}\label{RingAndModuleStructureOnCohomologyGroups} \begin{prop} \label{RingAndModuleStructureOnCohomologyGroupsOfMultiplicativeCohomplogyTheory}\hypertarget{RingAndModuleStructureOnCohomologyGroupsOfMultiplicativeCohomplogyTheory}{} Let $(E,\mu,1)$ be a multiplicative cohomology theory, def. \ref{MultiplicativeCohomologyTheory}. Then \begin{enumerate}% \item For every space $X$ the \hyperlink{InternalMultiplicationOfMultiplicativeCohomologyTheory}{cup product} gives $E^\bullet(X)$ the structure of a $\mathbb{Z}$-[[graded ring]], which is graded-commutative if $(E,\mu,1)$ is commutative. \item For every pair $(X,A)$ the external multiplication $\mu$ gives $E^\bullet(X,A)$ the structure of a left and right [[module]] over the graded ring $E^\bullet(\ast)$. \item All pullback morphisms respect the left and right action of $E^\bullet(\ast)$ and the connecting homomorphisms respect the right action and the left action up to multiplication by $(-1)^{n_1}$ \end{enumerate} \end{prop} \begin{proof} Regarding the third point: For pullback maps this is the [[natural transformation|naturality]] of the external product: let $f \colon (X,A) \longrightarrow (Y,B)$ be a morphism in $Top_{CW}^{\hookrightarrow}$ then naturality says that the following square commutes: \begin{displaymath} \itexarray{ E^{n_1}(\ast) \otimes E^{n_2}(Y,B) &\overset{\mu_{n_1,n_2}}{\longrightarrow}& E^{n_1 + n_2}(Y, B) \\ {}^{\mathllap{(id,f^\ast)}}\downarrow && \downarrow^{\mathrlap{f^\ast}} \\ E^{n_1}(\ast) \otimes E^{n_2}(X,A) &\overset{\mu_{n_1,n_2}}{\longrightarrow}& E^{n_1 + n_2}(Y,B) } \,. \end{displaymath} For connecting homomorphisms this is the (graded) commutativity of the squares in def. \ref{MultiplicativeCohomologyTheory}: \begin{displaymath} \itexarray{ E^{n_1}(\ast)\otimes E^{n_2}(A) &\overset{(-1)^{n_1} (id, \delta)}{\longrightarrow}& E^{n_1}(\ast) \otimes E^{n_2 + 2}(X) \\ {}^{\mathllap{\mu_{n_1,n_2}}}\downarrow && \downarrow^{\mathrlap{\mu_{n_1,n_2}}} \\ E^{n_1 + n_2}(A) &\overset{\delta}{\longrightarrow}& E_3^{n_1 + n_2+ 1}(X,B) } \,. \end{displaymath} \end{proof} \hypertarget{multiplicative_atiyahhirzebruch_spectral_sequences}{}\subsubsection*{{Multiplicative Atiyah-Hirzebruch spectral sequences}}\label{multiplicative_atiyahhirzebruch_spectral_sequences} \begin{prop} \label{AHSSForMultiplicativeCohomologyTheoryIsMultiplicative}\hypertarget{AHSSForMultiplicativeCohomologyTheoryIsMultiplicative}{} Given a multiplicative cohomology theory $(A,\mu,1)$ (def. \ref{MultiplicativeCohomologyTheory}), then for every [[Serre fibration]] $X \to B$ the corresponding [[Atiyah-Hirzebruch spectral sequence]] inherits the structure of a [[multiplicative spectral sequence]]. \end{prop} A proof of prop. \ref{AHSSForMultiplicativeCohomologyTheoryIsMultiplicative} via [[Cartan-Eilenberg systems]] is given at \emph{[[multiplicative spectral sequence]]}. A proof arguing via [[Brown representability theorem|representing]] [[ring spectra]] is in (\hyperlink{Kochman96}{Kochman 96, prop. 4.2.9}). \begin{prop} \label{LinearityOfDifferentialsInSerreAHSSForMultiplicativeCohomologyTheory}\hypertarget{LinearityOfDifferentialsInSerreAHSSForMultiplicativeCohomologyTheory}{} Given a multiplicative cohomology theory $(A,\mu,1)$ (def. \ref{MultiplicativeCohomologyTheory}), then for every [[Serre fibration]] $X \to B$ all the differentials in the corresponding [[Atiyah-Hirzebruch spectral sequence]] \begin{displaymath} H^\bullet(B,A^\bullet(F)) \;\Rightarrow\; A^\bullet(X) \end{displaymath} are linear over $A^\bullet(\ast)$. \end{prop} \begin{proof} By construction (\href{Atiyah–Hirzebruch+spectral+sequence#ConstructionByFilteringTheBaseSpace}{here}) the differentials are those induced by the [[exact couple]] \begin{displaymath} \itexarray{ \underset{s,t}{\prod} A^{s+t}(X_{s}) && \stackrel{}{\longrightarrow} && \underset{s,t}{\prod} A^{s+t}(X_{s}) \\ & \nwarrow && \swarrow \\ && \underset{s,t}{\prod} A^{s+t}(X_{s}, X_{s-1}) } \;\;\;\;\;\;\; \left( \itexarray{ A^{s+t}(X_s) & \longrightarrow & A^{s+t}(X_{s-1}) \\ \uparrow && \downarrow_{\mathrlap{\delta}} \\ A^{s+t}(X_s, X_{s-1}) && A^{s+t+1}(X_{s}, X_{s-1}) } \right) \,. \end{displaymath} consisting of the pullback homomorphisms and the connecting homomorphisms of $A$. By the nature of spectral sequences induced from exact couples (\href{exact+couple#CohomologicalSpectralSequenceOfAnExactCouple}{this prop.}) its differentials on page $r$ are the composites of one pullback homomorphism, the preimage of $(r-1)$ pullback homomorphisms, and one connecting homomorphism of $A$. Hence the statement follows with prop. \ref{RingAndModuleStructureOnCohomologyGroupsOfMultiplicativeCohomplogyTheory}. \end{proof} \hypertarget{BrownRepresentabilityByRingSpectra}{}\subsubsection*{{Brown representability by ring spectra}}\label{BrownRepresentabilityByRingSpectra} A \emph{multiplicative structure} on a [[generalized (Eilenberg-Steenrod) cohomology]] theory is the structure of a [[ring spectrum]] on the [[spectrum]] that [[Brown representability theorem|represents]] it. e.g. (\hyperlink{TamakiKono06}{Tamaki-Kono 06, appendix C}, \hyperlink{Lurie10}{Lurie 10, lecture 4}) In particular every [[E-∞ ring]] is a [[ring spectrum]], hence represents a multiplicative cohomology theory, but the converse is in general false. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[ordinary cohomology]] with [[coefficients]] in a [[ring]], in particular [[integral cohomology]] \item [[topological K-theory]], [[K-theory]] \item [[cobordism cohomology theory]] \item [[tmf]] \item etc\ldots{}. \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Kronecker pairing]] \item [[universal coefficient theorem]], [[module spectrum|module cohomology theories]], \ldots{} \end{itemize} See also \begin{itemize}% \item [[complex oriented cohomology theory]], [[chromatic homotopy theory]] \item [[Thom isomorphism]] \item [[orientation in generalized cohomology]] \item [[fiber integration]] \item [[K-theory of a bipermutative category]] \item [[multiplicative spectral sequence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Dai Tamaki]], [[Akira Kono]], chapter 2.6 of \emph{Generalized Cohomology}, Translations of Mathematical Monographs, American Mathematical Society, 2006 ([[GeneralizedCohomology.pdf:file]]) \item [[Jacob Lurie]], \emph{[[A Survey of Elliptic Cohomology - cohomology theories]]} \item [[Jacob Lurie]], \emph{[[Chromatic Homotopy Theory]]} 2010, Lecture 4 \emph{[[complex oriented cohomology theory|Complex-oriented cohomology theories]]} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture4.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[Stanley Kochman]], \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \end{itemize} [[!redirects multiplicative cohomology theories]] [[!redirects multiplicative cohomology]] \end{document}