\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{multiplicative spectral sequence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{constructions}{Constructions}\dotfill \pageref*{constructions} \linebreak \noindent\hyperlink{from_spectral_products_on_cartaneilenberg_systems}{From spectral products on Cartan-Eilenberg systems}\dotfill \pageref*{from_spectral_products_on_cartaneilenberg_systems} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{AHSSForMultiplicativeCohomology}{AHSS for multiplicative cohomology}\dotfill \pageref*{AHSSForMultiplicativeCohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[spectral sequence]] is called \emph{multiplicative} or a \emph{spectral ring} if there is a bi-[[graded algebra]] structure on each page such that the differentials act as graded [[derivations]] of total degree 1. For example the [[Serre spectral sequence|Serre]]-[[Atiyah-Hirzebruch spectral sequence]] with [[coefficients]] in a [[ring spectrum]]. \hypertarget{constructions}{}\subsection*{{Constructions}}\label{constructions} \hypertarget{from_spectral_products_on_cartaneilenberg_systems}{}\subsubsection*{{From spectral products on Cartan-Eilenberg systems}}\label{from_spectral_products_on_cartaneilenberg_systems} The following gives sufficient conditions for a [[Cartan-Eilenberg spectral sequence]] to be multiplicative. This is due to (\hyperlink{Douady58}{Douady 58}). The following is taken from (\hyperlink{Goette15}{Goette 15a}). \begin{defn} \label{SpectralProduct}\hypertarget{SpectralProduct}{} Let $(H,\eta,\partial)$, $(H',\eta',\partial')$ und $(H'',\eta'',\partial'')$ be [[Cartan-Eilenberg systems]]. A \textbf{spectral product} $\mu\colon(H',\partial')\times(H'',\partial'')\to(H,\partial)$ is a sequence of [[homomorphisms]] \begin{displaymath} \mu_r\colon H'(m,m+r)\otimes H''(n,n+r)\to H(m+n,m+n+r) \end{displaymath} such that for all $m$, $n$, $r\ge 1$, the following two [[commuting diagram|diagrams commute]]: \begin{displaymath} \itexarray{ H'(m, m+r) \otimes H''(n, n+r) &\stackrel{\mu_r}{\longrightarrow}& H(m+n, m+n+r) \\ \downarrow^{\mathrlap{\eta' \oplus \eta''}} && \downarrow^{\mathrlap{\eta}} \\ H'(m, m+1) \otimes H''(n, n+1) &\stackrel{\mu_1}{\longrightarrow}& H(m+n, m+n+1) } \end{displaymath} and \begin{displaymath} \itexarray{ H'(m, m+r) \otimes H''(n, n+r) &\stackrel{\mu_r}{\longrightarrow}& H(m+n,m+n+r) \\ \downarrow^{\mathrlap{\partial' \otimes \eta'' \oplus \eta' \otimes \partial''}} && \downarrow^{\mathrlap{\partial}} \\ H'(m+r, m+r+1) \otimes H''(n,n+1) \\ \oplus &\stackrel{\mu_1 + \mu_1}{\longrightarrow}& H_{p+q-1}(m+n+r, m+n+r+1) \\ H'(m,m+1) \otimes H''(n+r, n+r+1) } \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} The first diagram in def. \ref{SpectralProduct} is weaker than in (\hyperlink{Douady58}{Douady 58}). The second may be read as a [[Leibniz rule]]. \end{remark} Write $E$ for the [[Cartan-Eilenberg spectral sequence]] induced from the Cartan-Eilenberg system $H$. \begin{prop} \label{MultiplicativeStructureFromSpectralProduct}\hypertarget{MultiplicativeStructureFromSpectralProduct}{} A spectral product $\mu\colon(H',\partial')\times(H'',\partial'')\to(H,\partial)$ as in def. \ref{SpectralProduct} induces products \begin{displaymath} \mu^r\colon E^{\prime r}_m\otimes E^{\prime\prime r}_n\to E^r_{m+n}\;, \end{displaymath} such that \begin{enumerate}% \item $\mu^1=\mu_1$ \item $d^r_{m+n}\circ\mu^r=\mu^r\circ(d^{\prime r}_m\otimes\mathrm{id})\pm\mu^r\circ(\mathrm{id}\circ d^{\prime\prime r}_n)$, \item $\mu^{r+1}$ is induced by $\mu^r$. \end{enumerate} \end{prop} (\hyperlink{Goette15}{Goette 15a}, following \hyperlink{Douady58}{Douady 58, theorem II}). \begin{proof} Assume by [[induction]] that $\mu^r$ is induced by $\mu_1$. In particular, \begin{displaymath} Z^{\prime r}_m\otimes Z^{\prime\prime r}_n\stackrel{\mu_1}\to Z^r_{m+n}\;, \end{displaymath} \begin{displaymath} B^{\prime r}_m\otimes Z^{\prime\prime r}_n\stackrel{\mu_1}\to B^r_{m+n}\;, \end{displaymath} \begin{displaymath} Z^{\prime r}_m\otimes B^{\prime\prime r}_n\stackrel{\mu_1}\to B^r_{m+n}\;. \end{displaymath} This is clear for $r=1$ if we put $\mu^1=\mu_1$ because $E^1_p=Z^1_p=H(p,p+1)$ and $B^1_p=0$. Let $[a]\in Z^{\prime r}_m$, $[b]\in Z^{\prime\prime r}_n$ be represented by $a=\eta'(a_0)\in H'(m,m+1)$, $b=\eta''(b_0)\in H''(n,n+1)$ with $a_0\in H'(m,m+r)$, $b_0\in H''(n,n+r)$. Using the first diagram and the construction of $d^r_{m+n}$, we conclude that \begin{displaymath} (d^r_{m+n}\circ\mu^r)([a]\otimes[b])=d^r_{m+n}[\mu_1(a\otimes b)]=d^r_{m+n}[\eta(\mu_r(a_0\otimes b_0))]=(\partial\circ\mu_r)(a_0\otimes b_0) \;. \end{displaymath} From the second diagram, we get \begin{displaymath} (\partial\circ\mu_r)(a_0\otimes b_0)=\mu_1(\partial'a_0\otimes\eta''b_0)\pm\mu_1(\eta'a_0\otimes\partial''b_0)=\mu^r(d^{\prime r}_m[a]\otimes[b])\pm\mu^r([a]\otimes d^{\prime\prime r}_n[b]) \;. \end{displaymath} This proves the Leibniz rule (2). From the Leibniz rule and the facts that $\ker(d^r_p)=Z^{r+1}_p/B^r_p$ and $\mathrm{im}(d^r_p)=B^{r+1}_p/B^r_p$, we conclude that $\mu^r$ induces a product on $E^{r+1}_p\cong\ker(d^r_p)/\mathrm{im}(d^r_p)$, which proves (3). Because $\mu^r$ is induced by $\mu_1$, so is $\mu^{r+1}$, and we can continue the induction. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{AHSSForMultiplicativeCohomology}{}\subsubsection*{{AHSS for multiplicative cohomology}}\label{AHSSForMultiplicativeCohomology} We discuss that the multiplicative structure on the cohomology [[Serre spectral sequence|Serre]]-[[Atiyah-Hirzebruch spectral sequence]] for [[multiplicative cohomology theory|multiplicative]] [[generalized cohomology]]. This is taken from (\hyperlink{Goette15}{Goette 15b}). \begin{defn} \label{CESystemForMultiplicativeGeneralizedCohomology}\hypertarget{CESystemForMultiplicativeGeneralizedCohomology}{} For $\pi\colon X\to B$ a [[Serre fibration]] over a [[CW-complex]] $B$. And for $(\tilde h^\bullet,\delta,\wedge)$ a [[multiplicative cohomology theory|multiplicative]] [[reduced cohomology|reduced]] [[generalized (Eilenberg-Steenrod) cohomology]] theory, define a [[Cartan-Eilenberg system]] $(H,\eta,\partial)$ by \begin{displaymath} H(p,q)=\tilde h^\bullet(X^{q-1}/X^{p-1}) \end{displaymath} (where $X^k=\pi^{-1}(B^k)$) for $p\le q$ with the obvious maps $\eta\colon H(p',q')\to H(p,q)$ for $p\le p'$, $q\le q'$. The [[Cartan-Eilenberg spectral sequence]] of this Cartan-Eilenberg system is the [[Serre spectral sequence|Serre]]-[[Atiyah-Hirzebruch spectral sequence]]. \end{defn} \begin{defn} \label{SpectralProductForAHSS}\hypertarget{SpectralProductForAHSS}{} The spectral product $\mu\colon(H,\eta,\partial)\times(H,\eta,\partial)\to(H,\eta,\partial)$, def. \ref{SpectralProduct}, on the Cartan-Eilenberg system of def. \ref{CESystemForMultiplicativeGeneralizedCohomology} is that given by the following morphism \begin{displaymath} \begin{aligned} F_{m,n,r} & \colon (X\wedge X)^{m+n+r-1}/(X\wedge X)^{m+n-1} \cong \bigcup_{a+b=m+n+r-1}(X^a\wedge X^b) / \bigcup_{c+d=m+n-1}(X^c\wedge X^d) \\ & \twoheadrightarrow \bigcup_{a+b=m+n+r-1} (X^a\wedge X^b)/(\bigcup_{a=0}^m(X^{a-1}\wedge X^{m+n+r-a}) \cup\bigcup_{b=0}^n(X^{m+n+r-b}\wedge X^{b-1}) \\ & \cong \bigcup_{a=m+1}^{m+r}(X^{a-1}\wedge X^{m+n+r-a}) / \bigl(X^{m+r-1}\wedge X^{n-1}\cup X^{m-1}\wedge X^{n+r-1}\bigr) \\ & \hookrightarrow X^{m+r-1}\wedge X^{n+r-1}/(X^{m+r-1}\wedge X^{n-1}\cup X^{m-1}\wedge X^{n+r-1}) \\ & \cong (X^{m+r-1}/X^{m-1})\wedge(X^{n+r-1}/X^{n-1}) \;. \end{aligned} \end{displaymath} Together with the [[diagonal]] map $\Delta$, for $r\ge 1$, we define \begin{displaymath} \begin{aligned} \mu_r & \colon H(m,m+r)\otimes H(n,n+r) \\ & \cong\tilde h(X^{m+r-1}/X^{m-1})\otimes\tilde h(X^{n+r-1}/X^{n-1}) \\ &\stackrel\wedge\longrightarrow\tilde h\bigl((X^{m+r-1}/X^{m-1})\wedge(X^{n+r-1}/X^{n-1})\bigr) \\ &\stackrel{F_{m,n,r}^*}\longrightarrow\tilde h\bigl((X\wedge X)^{m+n+r-1}/(X\wedge X)^{m+n-1}\bigr) \\ &\stackrel{\Delta_X^*}\longrightarrow\tilde h(X^{m+n+r-1}/X^{m+n-1})=H(m+n,m+n+r)\;. \end{aligned} \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} With def. \ref{SpectralProductForAHSS}, then for all $m$, $n$, $r\ge 1$, the following [[commuting diagram|diagram commutes]] \begin{displaymath} \itexarray{ H(m,m+1) \otimes H(n,n+1) &\stackrel{\mu_1}{\longrightarrow}& H(m+n, m+n+1) \\ \uparrow^{\mathrlap{\eta \oplus \eta}} && \uparrow^{\mathrlap{\eta}} \\ H(m,m+r) \otimes H(n,n+r) &\stackrel{\mu_r}{\longrightarrow}& H(m+n,m+n+r) \\ \downarrow^{\mathrlap{\partial \otimes \eta \oplus \eta \otimes \partial}} && \downarrow^{\mathrlap{\partial}} \\ H(m+r, m+r+1) \otimes H(n,n+1) \\ \oplus &\stackrel{\mu_1 \pm \mu_1}{\longrightarrow}& H(m+n+r, m+n+r+1) \\ H(m,m+1) \otimes H(n+r, n+r+1) } \,. \end{displaymath} Hence by prop. \ref{MultiplicativeStructureFromSpectralProduct} the spectral product of def. \ref{SpectralProductForAHSS} defines a mutliplicative structure on the Serre-WhiteheadAtiyah-Hirzebruch spectral sequence for multiplicative generalizted cohomology. \end{prop} \begin{proof} The upper square commutes because the maps $F_{m,n,r}$ are [[natural transformations]]. For the lower square, we consider the boundary morphism $\delta$ of the triple \begin{displaymath} \begin{aligned} (& X^{m+r}\wedge X^{n+r-1}\cup X^{m+r-1}\wedge X^{n+r}, \\ & X^{m+r}\wedge X^{n-1}\cup X^{m+r-1}\wedge X^{n+r-1}\cup X^{m-1}\wedge X^{n+r}, \\ & X^{m+r}\wedge X^{n-1}\cup X^{m-1}\wedge X^{n+r}) \end{aligned} \;. \end{displaymath} The following diagram commutes: \begin{displaymath} \itexarray{ \tilde h^{-p}(X^{m+r-1}/ X^{m-1}) \otimes \tilde h^{-q}(X^{n+r-1}/X^{n-1}) &\stackrel{\wedge}{\longrightarrow}& \tilde h^{-p-q}((X^{m+r-1}/X^{m-1}) \wedge (X^{n+r-1}/X^{n-1}) \\ \downarrow^{\mathrlap{\delta \wedge id \oplus id \wedge \delta}} && \downarrow^{\mathrlap{\delta}} \\ \tilde h(1-p)(X^{m+r}/X^{m+r-1}) \otimes \tilde h^{-q}(X^{n+r-1}/X^{n-1}) && \tilde h^{1-p-q}((X^{m+r}/X^{m+r-1}) \wedge (X^{n+r-1}/X^{n-1})) \\ \oplus &\stackrel{\wedge \oplus \wedge}{\longrightarrow}& \\ \tilde h^{-p}(X^{m+r-1}/X^{m-1}) \otimes \tilde h^{1-q}(X^{n+r}/X^{n+r-1}) && \tilde h^{1-p-q}( (X^{m+r-1}/ X^{m-1}) \wedge (X^{n+r}/ X^{n+r-1}) ) } \,. \end{displaymath} By extend this diagram to the right using the maps $F_{m,n,r}$ once concludes that the lower square above also commutes. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[multiplicative cohomology theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Adrien Douady]], \emph{La suite spectrale d'Adams : structure multiplicative} S\'e{}minaire Henri Cartan, 11 no. 2 (1958-1959), Exp. No. 19, 13 p (\href{http://www.numdam.org/item?id=SHC_1958-1959__11_2_A10_0}{Numdam}) \item Brayton Gray, \emph{Products in the Atiyah-Hirzebruch spectral sequence and the calculation of $M SO_\ast$, Trans. Amer. Math. Soc. 260 (1980), 475-483 (\href{http://www.ams.org/journals/tran/1980-260-02/S0002-9947-1980-0574793-9/}{web})} \item [[Stanley Kochmann]], prop. 4.2.9 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[John McCleary]], section 2.3 in \emph{A User's Guide to Spectral Sequences}, Cambridge University Press (2000) \item [[Daniel Dugger]], \emph{Multiplicative structures on homotopy spectral sequences I} (\href{http://de.arxiv.org/abs/math/0305173}{arXiv:math/0305173}) \item [[Daniel Dugger]], \emph{Multiplicative structures on homotopy spectral sequences II} (\href{http://de.arxiv.org/abs/math/0305187}{arXiv:math/0305187}) \item [[Sebastian Goette]], \href{http://mathoverflow.net/a/231235/381}{MO comment a}, \href{http://mathoverflow.net/a/231236/381}{MO comment b} Feb 15, 2015 \end{itemize} [[!redirects multiplicative spectral sequences]] \end{document}