\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{multiplicative unitary} [[!redirects pentagon relation]] [[!redirects multiplicative unitaries]] [[!redirects fundamental operator]] \hypertarget{idea}{}\subsubsection*{{Idea}}\label{idea} While the following idea is originally in operator setup and with an involution, consider the following. Let $H$ be a finite-dimensional vector space. Consider the invertible operator $W : H\otimes H \to H\otimes H$ satisfying the pentagon identity \begin{displaymath} W_{1 2} W_{1 3} W_{2 3} = W_{2 3} W_{1 2} \end{displaymath} in the space of linear endomorphisms of $H\otimes H\otimes H$. Then the formula \begin{displaymath} \Delta(h) = W (h\otimes 1) W^{-1} \end{displaymath} define a coassociative coproduct on $H$. Usually we replace the structure of the coproduct with knowing $W$, which can be easier to define in infinite-dimensional analogues when the coproduct needs to take values in some hard to manage completions. for all $h\in H$. For finite-dimensional Hopf algebras $W(g\otimes h) = g_{(1)}\otimes g_{(2)} h$ and $W^{-1}(g\otimes h) = g_{(1)}\otimes (S g_{(2)}) h$ and then we can reproduce the antipode via the formula \begin{displaymath} S h = (\epsilon\otimes id)\circ W^{-1}(h\otimes - ) \end{displaymath} We can also make a discussion in terms of the dual space $H^*$. Then the coproduct on $H^*$ which is dual to the product on $H$ is also obtained from $W$ by the formula \begin{displaymath} \Delta_{H^*}(\psi) = W^{-1} (1\otimes\psi) W \end{displaymath} \hypertarget{literature_and_further_directions}{}\subsubsection*{{Literature and further directions}}\label{literature_and_further_directions} In the setup of operator algebras, the multiplicative unitaries were introduced as so called Kac–Takesaki operator. Following some ideas on noncommutative extensions of Pontrjagin duality (in Tannaka-Krein spirit) by George's Kac and also M. Takesaki, Lecture Notes in Mathematics. 247, Berlin: Springer; 1972. pp. 665–785. The followup work of Baaj and Skandalis introduced two more fundamental axioms, regularity and irreducibility, important in $C^*$-algebraic setup. \begin{itemize}% \item Saad Baaj, Georges Skandalis, \emph{Unitaires multiplicatifs et dualité pour les produits croisés de $C^*$-algèbre}, Annales scientifiques de l'École Normale Supérieure \textbf{26}:4 (1993) 425-488 \href{https://doi.org/10.24033/asens.1677}{numdam}; \emph{Transformations pentagonales (Pentagonal transformations)}, Comptes Rendus de l'Académie des Sciences, I - Mathematics \textbf{327}:7 (1998) 623-628, \href{a: href="https://doi.org/10.1016/S0764-4442(99)80090-1"}{a\char58\char32href\char61\char34https\char58\char47\char47doi\char46org\char47\char49\char48\char46\char49\char48\char49\char54\char47S\char48\char55\char54\char52\char45\char52\char52\char52\char50\char40\char57\char57\char41\char56\char48\char48\char57\char48\char45\char49\char34}doi{\tt \symbol{60}}/a{\tt \symbol{62}} \item Saad Baaj, Étienne Blanchard, Georges Skandalis, \emph{Unitaires multiplicatifs en dimension finieet leurs sous-objets}, Annales de l’institut Fourier, tome 49, no4 (1999), p. 1305-1344 \href{http://www.numdam.org/item?id=AIF_1999__49_4_1305_0}{numdam} \end{itemize} The monograph on Kac algebras is \begin{itemize}% \item M. Enock, J. M. Schwartz, \emph{Kac algebras and duality of locally compact groups}, Springer-Verlag, 1992, , x+257 pp. \href{http://books.google.com/books/about/Kac_algebras_and_duality_of_locally_comp.html?id=U6e6aD1gj3oC}{gBooks}, \href{http://www.ams.org/mathscinet-getitem?mr=1215933}{MR94e:46001} \end{itemize} and a more recent view of duality between Hopf algebra approach and an approach to quantum groups via multiplicative unitaries is in the book \begin{itemize}% \item Thomas Timmermann, \emph{An invitation to quantum groups and duality: From Hopf algebras to multiplicative unitaries and beyond}, Europ. Math. Soc. 2008. \end{itemize} Introduction to Ch. 7 says in Timmerman's book says \begin{quote}% Multiplicative unitaries are fundamental to the theory of quantum groups in the setting of $C^*$-algebras and [[von Neumann algebra]]s, and to generalizations of [[Pontrjagin duality]]. Roughly, a multiplicative unitary is one single map that encodes all structure maps of a quantum group and of its generalized Pontrjagin dual simultaneously. \end{quote} Woronowicz has introduced managaeble multiplicative unitaries \begin{itemize}% \item [[S. L. Woronowicz]], \emph{From multiplicative unitaries to quantum groups}, Internat. J. Math. \textbf{7} (1996), 127–149. \end{itemize} It is useful to look at the survey \begin{itemize}% \item Johan Kustermans, Stefaan Vaes, \emph{The operator algebra approach to quantum groups}, Proc Natl Acad Sci USA 97(2): 547–552 (2000) \href{https://doi.org/10.1073/pnas.97.2.547}{doi} \item A. Van Daele, S. Van Keer, \emph{The Yang-Baxter and pentagon equation}, Compositio Mathematica \textbf{91}:2 (1994) 201-221 \href{http://www.numdam.org/item/CM_1994__91_2_201_0}{numdam} \end{itemize} The categorical background of the pentagon equation has been studied in \begin{itemize}% \item [[Ross Street]], \emph{Fusion operators and cocycloids in monoidal categories}, Applied Categorical Structures 6: 177–191 (1998) \href{https://doi.org/10.1023/A:1008655911796}{doi} \end{itemize} A finite dimensional version is reformulated in section 3 of \begin{itemize}% \item S. Majid, \emph{Quantum random walks and time reversal} \href{https://doi.org/10.1142/S0217751X93001818}{doi} \end{itemize} and reprinted in Majid's, \emph{Foundations of quantum group theory}, 1995, as Theorem 1.7.4. Majid has stated in this finite-dimensional case, ideas about [[quantum group Fourier transform]] (see there and Majid's book). This has been used in \begin{itemize}% \item Laurent Freidel, [[nlab:Shahn Majid]], \emph{Noncommutative harmonic analysis, sampling theory and the Duflo map in $2+1$ quantum gravity}, Classical Quantum Gravity \textbf{25} (2008), no. 4, 045006 \href{http://www.ams.org/mathscinet-getitem?mr=2388191}{MR2009f:83058}, \href{http://dx.doi.org/10.1088/0264-9381/25/4/045006}{doi} \end{itemize} More categorical treatment and relation to [[Hopf-Galois extension]]s is in \begin{itemize}% \item A. A. Davydov, \emph{Pentagon equation and matrix bialgebras}, Commun. Alg. \textbf{29}(6), 2627–2650 (2001) \href{https://doi.org/10.1081/agb-100002412}{doi} \end{itemize} In the language of finite-dimensional Heisenberg doubles see also the treatment of fundamental operator in \begin{itemize}% \item G. Militaru, \emph{Heisenberg double, pentagon equation, structure and classification of finite-dimensional Hopf algebras}, J. London Math. Soc. (2) 69 (2004) 44--64 (\href{http://dx.doi.org/10.1112/S0024610703004897}{doi}). \end{itemize} Kashaev has explained the pentagon relations for quantum [[dilogarithm]] as coming from the pentagon for the canonical element in the double. \begin{itemize}% \item R.M. Kashaev, \emph{Heisenberg double and the pentagon relation}, St. Petersburg Math. J. 8 (1997) 585-- 592 \href{http://arxiv.org/abs/q-alg/9503005}{q-alg/9503005}. \end{itemize} The multiplicative unitary representing quantum dilogarithm has been studied analytically, in the disguise of a quantum exponential, in relation to the construction of ``noncompact quantum ax+b group'' in \begin{itemize}% \item [[S. L. Woronowicz]], \emph{Quantum exponential function}, Reviews in Mathematical Physics \textbf{12}:06, 873-920 (2000) \href{https://doi.org/10.1142/S0129055X00000344}{doi} \end{itemize} The formalism is also in \begin{itemize}% \item S. L. Woronowicz, From multiplicative unitaries to quantum groups, Internat. J. Math. 7(1) (1996) 127–149 \href{https://doi.org//10.1142/S0129167X96000086}{doi}, MR 1369908 \item P. M. Sołtan, S. L. Woronowicz, \emph{From multiplicative unitaries to quantum groups. II}, J. Funct. Anal 252(1), 42–67 (2007) \href{https://doi.org/10.1016/j.jfa.2007.07.006}{doi} \item [[Ralf Meyer]], Sutano Roy, [[S. L. Woronowicz]], \emph{Quantum group-twisted tensor products of $C^*$-algebras}, Int. J. \textbf{25}:02, 1450019 (2014) \href{https://doi.org/10.1142/S0129167X14500190}{doi}; \emph{Semidirect products of $C^*$-quantum groups: multiplicative unitaries approach}, Commun. Math. Phys. \textbf{351}, 249–282 (2017) \href{https://doi.org/10.1007/s00220-016-2727-3}{doi} \item Ralf Meyer, Sutanu Roy, \emph{Braided multiplicative unitaries as regular objects}, Adv. Stud. Pure Math., Operator Algebras and Mathematical Physics, M. Izumi, Y. Kawahigashi, M. Kotani, H. Matui, N. Ozawa, eds. (Tokyo: Mathematical Society of Japan, 2019) 153 - 178 \href{https://doi.org/10.2969/aspm/08010153}{doi} \end{itemize} The role of quantum torus is here quite clear; later treatments of more general quantum [[dilogarithm]]s influenced by Kontsevich-Soibelman work on [[wall crossing]] and related Goncharov's cluster varieties quantization also witness the appearance of the similar quantum torus. \end{document}