\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{n-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{categories_of_categories}{Categories of $n$-categories}\dotfill \pageref*{categories_of_categories} \linebreak \noindent\hyperlink{defn}{Definitions}\dotfill \pageref*{defn} \linebreak \noindent\hyperlink{list_of_definitions}{List of definitions}\dotfill \pageref*{list_of_definitions} \linebreak \noindent\hyperlink{comparisons}{Comparisons}\dotfill \pageref*{comparisons} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $n \in \mathbb{N}$, an \emph{$n$-category} is like \begin{itemize}% \item an $n$-truncated [[directed space]] in which $(k \leq n)$-dimensional paths have a direction, while all higher dimensional paths are reversible and parallel higher dimensional paths are homotopic; \item a $n$-fold higher analog of what a [[category]] is to a [[set]] \end{itemize} $n$-Categories are the main subject of [[higher category theory]], and give the $n$-[[About|Lab]] its name. In their modern formulation in [[homotopy theory]] they are known as \emph{[[(∞,n)-categories]]} (see there for more details). Semi-formally, $n$-categories can be described as follows. An $n$-category is an [[∞-category]] such that all $(n+1)$-morphisms are [[equivalence]]s, and all parallel pairs of $j$-morphisms are equivalent for $j > n$. (One says that the $\infty$-category is \emph{trivial} in degree greater than $n$.) This is the same thing as an $(n,n)$-category in the sense of $(n,r)$-[[(n,r)-category|categories]]. Up to equivalence, you may assume that all equivalent pairs of $j$-morphisms for $j > n$ are in fact equal, and many authorities include this as a requirement. On the other hand, you can also write down a definition of $n$-category from scratch (without passing through $\infty$-categories), and then this question never comes up. The point is that you don't talk about $j$-morphisms for $j > n$; you stop at $n$-morphisms. On the $n$Lab, the term ``$n$-category'' usually means a \emph{weak} $n$-category, in which the compositions of cells obeys the usual associativity, unit, and exchange laws only up to coherent [[equivalence]]. This sort of $n$-category is somewhat tricky to define; there are a number of proposals, not yet shown to be equivalent. By contrast, [[strict n-categories]] are easy to define, but are not sufficient for most examples when $n\ge 3$ (see [[semistrict n-category]]). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item A $0$-category is a [[set]]. \item A $1$-category is an ordinary [[category]]. \item A $2$-[[2-category|category]] is (depending on how strict was your initial notion of $\infty$-category) either a [[strict 2-category]] or a [[bicategory]]. \end{itemize} One also speaks of $(-1)$-[[(-1)-category|categories]] and $(-2)$-[[(-2)-category|categories]], but these concepts are not as well behaved. \hypertarget{categories_of_categories}{}\subsection*{{Categories of $n$-categories}}\label{categories_of_categories} Just as the collection of all ([[small category|small]]) sets is the prototypical example of a category, so the collection of all small $n$-categories is the prototypical example of an $(n+1)$-category. Actually, if you define things cleverly, then you can get an $(n+1)$-category of \emph{all} $n$-categories. If one assumes the [[Grothendieck universe|Axiom of Universes]], then there is a sequence of Grothendieck universes \begin{displaymath} U_0 \subset U_1 \subset U_2 \subset \cdots \end{displaymath} and we can say a set is \textbf{$U_i$-small} if it is an element of $U_i$. This allows us to make the following definitions: \begin{itemize}% \item $\Set$ is the category of all $U_0$-small sets; \item $\Cat$ is the 2-category of all $U_1$-small categories; \item $2\Cat$ is the 3-category of all $U_2$-small 2-categories; \item etc. \end{itemize} This is a convenient way to settle size questions once and for all for finite $n$, but it doesn't really work for $\infty$-categories. For more, see the discussion at \href{http://groups.google.com/group/sci.logic/browse_thread/thread/6891c85c2d9b2caf}{sci.logic}. \hypertarget{defn}{}\subsection*{{Definitions}}\label{defn} Here is a list of (some of) the proposed definitions of (weak) $n$-category, with references, and also a list of (some of) the comparisons that have been done. \hypertarget{list_of_definitions}{}\subsubsection*{{List of definitions}}\label{list_of_definitions} Many of these definitions are actually ``truncations'' of definitions of (weak) [[∞-categories]] (aka [[∞-categories]]). Some others are truncations of a definition of [[(∞,n)-categories]]. A nice overview of (many) of these can be found in Tom Leinster's paper ``A survey of definitions of $n$-category.'' Someone should add some more references! \begin{itemize}% \item Classical explicit definitions of ``fully weak'' $n$-category exist for $n\le 4$. Weak 0-categories are [[sets]], weak 1-categories are simply [[categories]] (due to [[Sammy Eilenberg|Eilenberg]] and [[Saunders Mac Lane|Mac Lane]]), weak 2-categories are [[bicategories]] (due to [[Jean Benabou|Benabou]]), weak 3-categories are [[tricategories]] (due to [[Gordon]]--[[John Power|Power]]--[[Ross Street|Street]]), and weak 4-categories are [[tetracategories]] (due to [[Todd Trimble]]). Going on in this way is generally admitted to be infeasible beyond $n=4$. \item [[Ross Street|Street's]] definition: an $n$-category is a [[simplicial set]] satisfying certain horn-filling conditions. See [[weak complicial set]] and [[simplicial model for weak ∞-categories]]. This is a truncation of a definition of $\omega$-category. It can be specialized to yield a notion of $(\infty,n)$-category. The resulting notion of $(\infty,1)$-category is a [[quasicategory]], and the resulting notion of $\infty$-groupoid is a [[Kan complex]]. \item [[John Baez|Baez]]--[[James Dolan|Dolan]] definition: an $n$-category is an [[opetopic set]] having enough $n$-universal fillers. Alternate definitions of opetopes (aka multitopes) have been given by [[Claudio Hermida|Hermida]]--[[Michael Makkai|Makkai]]--[[John Power|Power]] and [[Tom Leinster|Leinster]]; a comparison is due to [[Eugenia Cheng]], see \href{http://arxiv.org/abs/math.CT/0304277}{these} \href{http://arxiv.org/abs/math.CT/0304279}{three} \href{http://arxiv.org/abs/math.CT/0304284}{papers}. Makkai's version can do $\omega$. \item [[Jacques Penon|Penon]]`s definition: (someone describe this please!) Penon's original definition turned out to be too strict (see \href{http://web.science.mq.edu.au/~mbatanin/Penon1.ps}{Batanin} and \href{http://arxiv.org/abs/0907.3961}{Cheng--Makkai}) because it used [[reflexive globular set|reflexive globular sets]], but a modification of it using [[globular sets]] is still a contender. \item [[Michael Batanin|Batanin]]--[[Tom Leinster|Leinster]] definition: an $n$-category is an $n$-[[globular set]] with an action of a suitable [[globular operad]]. This is a truncation of a definition of $\omega$-category; see [[Batanin ∞-category]]. \item [[Todd Trimble|Trimble]]-style definition: An $n$-category is a category weakly enriched over $(n-1)$-categories, where the weakness is parametrized by an [[operad]]. This definition is inductive and thus cannot do $\omega$ in an obvious way, but it has been accomplished using terminal coalgebras; see [[Trimble n-category]]. Alternately, by starting with enrichment in [[spaces]] or [[simplicial sets]], one can obtain directly a notion of [[(∞,n)-category]]. The resulting notion of [[(∞,1)-category]] is an $A_\infty$-[[A∞-category|category]]. \item [[Tamsamani]]--[[Carlos Simpson|Simpson]] definition: An $n$-category is a simplicial object in $(n-1)$-categories satisfying object-discreteness and the [[Segal condition]]. This definition is inductive (it is a different way of formalizing ``iterated weak enrichment'') and thus cannot do $\omega$ in an obvious way. It does have a natural extension to $(\infty,n)$-categories, and the resulting notion of [[(∞,1)-category]] reduces to a [[Segal category]]. The iterated version of this is that of [[Segal n-category]]. This notion of ``weak enrichment'' in a [[cartesian model category]] is studied carefully in Simpson's book [[Homotopy Theory of Higher Categories]]. \item [[Ieke Moerdijk|Moerdijk]] and [[Ittay Weiss|Weiss]]`s definition uses yet another way of formalizing ``iterated weak enrichment,'' using [[dendroidal sets]] and [[quasi-operad]]s. \item [[Andre Joyal|Joyal]]`s definition: An $n$-category is an $n$-[[cellular set]] satisfying horn-filling conditions. This definition can do $\omega$ by using $\omega$-cellular sets instead of $n$-cellular sets, and it can do $(\infty,n)$ by requiring different horn-filling conditions on $n$-cellular sets. The notion of [[(∞,1)-category]] one obtains in this way is a [[quasicategory]], and the resulting notion of $\infty$-groupoid is a [[Kan complex]]. For $n\gt 1$, however, the obvious ``horn-filling conditions'' are not quite right; [[Dimitri Ara]] has shown how to correct them (albeit not very explicitly), obtaining a definition he calls an [[n-quasicategory]], which form a model category Quillen equivalent to Rezk's definition (below). \item [[Clark Barwick|Barwick]]`s definition (popularized by [[Jacob Lurie|Lurie]] in solving the Baez--Dolan [[cobordism hypothesis]]): an $(\infty,n)$-category is an $n$-fold [[simplicial object|simplicial]] [[topological space]] satisfying completeness and the [[Segal condition]]. See [[n-fold complete Segal space]]. An $n$-category is again defined as an $(\infty,n)$-category in which all $k$-cells are essentially unique for $k\gt n$. It is not clear whether this definition can do $\omega$. An $(\infty,1)$-category with this definition is also the same as a [[complete Segal space]]. \item [[Charles Rezk|Rezk]]`s definition: An $(\infty,n)$-category is a \emph{simplicial} $n$-cellular set satisfying [[fibrancy]], completeness, and the [[Segal condition]]. An $n$-category can then be defined as an $(\infty,n)$-category in which all $k$-cells are essentially unique for $k\gt n$. This definition can potentially do $\omega$, although it seems not to have been written down yet. An $(\infty,1)$-category with this definition is the same as a [[complete Segal space]]. See [[Theta space]]. \item [[Georges Maltsiniotis|G. Maltsiniotis]] has apparently extracted a definition of $\infty$-groupoid from [[Pursuing Stacks]] and generalized it to a definition of $\infty$-category; see \href{http://people.math.jussieu.fr/~maltsin/ps/infgrart.pdf}{this} and \href{http://people.math.jussieu.fr/~maltsin/ps/infctart.pdf}{this}. \end{itemize} \hypertarget{comparisons}{}\subsubsection*{{Comparisons}}\label{comparisons} \begin{itemize}% \item All definitions produce the correct well-known notion of [[1-category]], up to minor inessential details. \item Since all the common definitions of [[(∞,1)-category]] are known to be equivalent (give references!), the definitions of Street, Trimble, Tamsamani--Simpson, Joyal, Barwick, and Rezk can be said to agree for $(\infty,1)$-categories. \item Julie Bergner has \href{http://arxiv.org/abs/0710.2254}{shown} that all the notions of $\infty$-groupoid obtained from the common notions of $(\infty,1)$-category are equivalent, so the definitions of Street, Trimble, Tamsamani--Simpson, Joyal, Barwick, and Rezk can also be said to agree for $(\infty,0)$-categories. \item It is known that the notions of $(n,0)$-category obtained from categories, bicategories, and tricategories model all [[homotopy n-types]] for $n\le 3$. Thus, in these cases, the classical definitions can be said to agree with those listed in the previous example. \item In Tom Leinster's paper, proofs are sketched showing that the notion of [[2-category]] obtained in each case looks somewhat like the notion of [[bicategory]]. \item Nick Gurski has shown in ``Nerves of bicategories as stratified simplicial sets'' that Street's definition is correct for $n=2$ (that is, it agrees with bicategories). \item Eugenia Cheng has \href{http://arxiv.org/abs/math/0304285}{shown} that the opetopic definition is correct for $n=2$ (that is, it agrees with bicategories). \item Eugenia Cheng has more recently also \href{http://arxiv.org/abs/0809.2070}{shown} that from any sequence of operads used for iterated enrichment in a Trimble-style definition, one can construct a Batanin--Leinster-style globular operad whose algebras are the $n$-categories obtained in the Trimblean inductive manner. Not all globular operads can be obtained in this way, however, since those that arise have strict interchange. \end{itemize} Please add any other comparisons you are aware of! \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[0-category]], [[(0,1)-category]], [[Set]] \item [[category]] \begin{itemize}% \item [[category object in an (∞,1)-category]] \end{itemize} \item [[2-category]], [[bicategory]] \item [[3-category]], [[tricategory]] \item [[4-category]], [[tetracategory]] \item \textbf{$n$-category} \begin{itemize}% \item [[n-category object in an (∞,1)-category]] \end{itemize} \item [[(n,1)-category]] \item [[(∞,1)-category]] \item [[(∞,2)-category]] \item [[(∞,n)-category]] \item [[(n,r)-category]] \end{itemize} [[!redirects $n$-category]] [[!redirects n-categories]] [[!redirects weak n-category]] [[!redirects weak n-categories]] \end{document}