\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{n-connected object of an (infinity,1)-topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{PropertiesGeneral}{General}\dotfill \pageref*{PropertiesGeneral} \linebreak \noindent\hyperlink{RecursiveCharacterization}{Recursive characterization}\dotfill \pageref*{RecursiveCharacterization} \linebreak \noindent\hyperlink{factorization_system}{Factorization system}\dotfill \pageref*{factorization_system} \linebreak \noindent\hyperlink{blakersmassey_theorem}{Blakers-Massey theorem}\dotfill \pageref*{blakersmassey_theorem} \linebreak \noindent\hyperlink{Clock}{The truncated / connected clock}\dotfill \pageref*{Clock} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{InTop}{In $Top$}\dotfill \pageref*{InTop} \linebreak \noindent\hyperlink{ExamplesInGrpd}{In $Grpd$}\dotfill \pageref*{ExamplesInGrpd} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \textbf{$n$-connected object} is an object all whose [[homotopy group]]s \emph{equal to or below} degree $n$ are trivial. More precisely, an object in an [[∞-stack]] [[(∞,1)-topos]] is $n$-connected if its [[homotopy groups in an (∞,1)-topos|categorical homotopy groups]] equal to or below degree $n$ are trivial. The complementary notion is that of an [[n-truncated object of an (∞,1)-category]]. The [[Whitehead tower]] construction produces $n$-connected objects. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \begin{defn} \label{Connectedness}\hypertarget{Connectedness}{} An [[object]] $X$ in an [[(∞,1)-topos]] $\mathbf{H}$ is called \textbf{$n$-connected} for $-1 \leq n \in \mathbb{Z}$ if \begin{enumerate}% \item the [[terminal object|terminal]] morphism $X \to *$ is an [[effective epimorphism in an (infinity,1)-category|effective epimorphism]]; \item all [[homotopy groups in an (∞,1)-topos|categorical homotopy groups]] equal to or below degree $n$ are trivial. \begin{displaymath} \pi_k(X) = * \;\;\; for \; k \leq n \,. \end{displaymath} \end{enumerate} A [[morphism]] $f : X \to Y$ in an $(\infty,1)$-topos is called \textbf{$n$-connected} if \begin{enumerate}% \item it is an [[effective epimorphism in an (∞,1)-category]] \item regarded as an object in the [[over quasi-category|over-(∞,1)-category]] $\mathbf{H}_{/Y}$ all [[homotopy groups in an (∞,1)-topos|categorical homotopy groups]] equal to or below degree $n$ are trivial. \end{enumerate} \end{defn} This appears as [[Higher Topos Theory|HTT, def. 6.5.1.10]], but under the name ``$(n+1)$-connective''. Another possible term is ``$n$-simply connected''; see [[n-connected space]] for discussion. One adopts the following convenient terminology. \begin{itemize}% \item Every object is $(-2)$-connected. \item A $(-1)$-connected object is also called an [[inhabited object]]. \item A 0-connected object is simply called a \textbf{connected object}. \end{itemize} Notice that [[effective epimorphism in an (∞,1)-category|effective epimorphisms]] are precisely the $(-1)$-connected morphisms. For more on this see \emph{[[n-connected/n-truncated factorization system]]}. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{PropertiesGeneral}{}\subsubsection*{{General}}\label{PropertiesGeneral} \begin{prop} \label{ConnectednessViaTruncationComodalness}\hypertarget{ConnectednessViaTruncationComodalness}{} An object $X$ is $n$-connected, def. \ref{Connectedness}, precisely if its [[n-truncated object in an (∞,1)-category|n-truncation]] $\tau_{\leq n} X$ is [[generalized the|the]] [[terminal object]] of $\mathbf{H}$ (hence precisely if it is $\tau_{\leq n}$-[[comodal type|comodal]]). \end{prop} This is [[Higher Topos Theory|HTT, prop. 6.5.1.12]]. \begin{lemma} \label{}\hypertarget{}{} Every [[equivalence in a quasi-category|equivalence]] is $\infty$-connected. \end{lemma} This is [[Higher Topos Theory|HTT, prop. 6.5.1.16, item 2]]. \begin{remark} \label{}\hypertarget{}{} In a general $(\infty,1)$-topos the converse is not true: not every $\infty$-connected morphisms needs to be an equivalence. It is true in a [[hypercomplete (∞,1)-topos]]. \end{remark} \begin{prop} \label{}\hypertarget{}{} The class of $n$-connected morphisms is stable under [[pullback]] and [[pushout]]. If the pullback of a morphism along an [[effective epimorphism]] is $n$-connected, then so is the original morphism. \end{prop} This is [[Higher Topos Theory|HTT, prop. 6.5.1.16, item 6]]. \hypertarget{RecursiveCharacterization}{}\subsubsection*{{Recursive characterization}}\label{RecursiveCharacterization} \begin{prop} \label{CharacterizationByDiagonal}\hypertarget{CharacterizationByDiagonal}{} A morphism $f : X \to Y$ is $n$-connected precisely if it is an [[effective epimorphism in an (infinity,1)-category|effective epimorphism]] and the [[diagonal]] morphism into the [[(∞,1)-pullback]] \begin{displaymath} \Delta_f : X \to X \times_Y X \end{displaymath} is $(n-1)$-connected. \end{prop} This appears as [[Higher Topos Theory|HTT, prop. 6.5.1.18]]. \hypertarget{factorization_system}{}\subsubsection*{{Factorization system}}\label{factorization_system} \begin{prop} \label{}\hypertarget{}{} Let $\mathbf{H}$ be an [[(∞,1)-topos]]. For all $(-2) \leq n \leq \infty$ the [[class]] of $n$-connected morphisms in $\mathbf{H}$ forms the left class in a [[orthogonal factorization system in an (∞,1)-category]]. The right class is that of [[n-truncated]] morphisms in $\mathbf{H}$. \end{prop} See also [[n-connected/n-truncated factorization system]]. This appears as a remark in [[Higher Topos Theory|HTT, Example 5.2.8.16]]. A construction of the factorization in terms of a [[model category]] [[presentable (∞,1)-category|presentation]] is in (\hyperlink{Rezk}{Rezk, prop. 8.5}). \hypertarget{blakersmassey_theorem}{}\subsubsection*{{Blakers-Massey theorem}}\label{blakersmassey_theorem} \begin{itemize}% \item [[Blakers-Massey theorem]] \end{itemize} \hypertarget{Clock}{}\subsubsection*{{The truncated / connected clock}}\label{Clock} In a [[hypercomplete (∞,1)-topos]] the $\infty$-connected morphisms are precisely the [[equivalence in an (∞,1)-category|equivalences]]. Therefore in such a context we have the following ``clock'' of notions of [[truncated object in an (infinity,1)-category]] / connected : \begin{itemize}% \item any morphism = $(-2)$-connected \item [[effective epimorphism in an (∞,1)-category|effective epimorphism]] = $(-1)$-connected \item 0-connected, 1-connected, 2-connected, $\cdots$; \item $\infty$-connected = [[equivalence in an (∞,1)-category|equivalence]] = $(-2)$-truncated \item [[monomorphism in an (∞,1)-category|monomorphism]] = $(-1)$-truncated \item 0-truncated, 1-truncated, 2-truncated, $\cdots$ \item $\infty$-truncated = any morphism \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{InTop}{}\subsubsection*{{In $Top$}}\label{InTop} In the the [[(∞,1)-category]] $L_{whe}$[[Top]] we have that an object is $n$-connected precisely if it is an [[n-connected topological space]]: \begin{itemize}% \item a $(-1)$-connected object is an [[inhabited set|inhabited space]]. \item a $0$-connected object is a [[path-connected space]]. \item a $1$-connected object is a [[simply connected space]]. \item a $\infty$-connected object is a [[contractible space]]. \end{itemize} More generally, a continuous function represents an $n$-connected morphism in $L_{whe} Top$ precisely if it is an [[n-connected continuous function]] (``[[n-equivalence]]''). \hypertarget{ExamplesInGrpd}{}\subsubsection*{{In $Grpd$}}\label{ExamplesInGrpd} \begin{prop} \label{}\hypertarget{}{} Let $f : X \to Y$ be a [[functor]] between [[groupoids]]. Regarded as a morphism in [[∞Grpd]] $f$ is 0-connected precisely if it is an [[essentially surjective functor|essentially surjective]] and [[full functor]]. \end{prop} \begin{proof} As discussed there, an [[effective epimorphism in an (∞,1)-category|effective epimorphism]] in [[∞Grpd]] between 1-groupoids is precisely an [[essentially surjective functor]]. So it remains to check that for an essentially surjective $f$, being 0-connected is equivalent to being full. The [[homotopy pullback]] $X \times_Y X$ is given by the groupoid whose objects are triples $(x_1, x_2 \in X, \alpha : f(x_1) \to f(x_2))$ and whose morphisms are corresponding tuples of morphisms in $X$ making the evident square in $Y$ commute. By prop. \ref{CharacterizationByDiagonal} it is sufficient to check that the [[diagonal]] functor $X \to X \times_Y X$ is (-1)-connected, hence, as before, essentially surjective, precisely if $f$ is full. First assume that $f$ is full. Then for $(x_1,x_2, \alpha) \in X \times_Y X$ any object, by [[full functor|fullness]] of $f$ there is a morphism $\hat \alpha : x_1 \to x_2$ in $X$, such that $f(\hat \alpha) = \alpha$. Accordingly we have a morphism $(\hat \alpha,id) : (x_1, x_2) \to (x_2, x_2)$ in $X \times_Y X$ \begin{displaymath} \itexarray{ f(x_1) &\stackrel{f(\hat \alpha)}{\to}& f(x_2) \\ \downarrow^{\mathrlap{\alpha}} && \downarrow^{\mathrlap{id}} \\ f(x_2) &\stackrel{id}{\to}& f(x_2) } \end{displaymath} to an object in the diagonal. Conversely, assume that the diagonal is essentially surjective. Then for every pair of objects $x_1, x_2 \in X$ such that there is a morphism $\alpha : f(x_1) \to f(x_2)$ we are guaranteed morphisms $h_1 : x_1 \to x_2$ and $h_2 : x_2 \to x_2$ such that \begin{displaymath} \itexarray{ f(x_1) &\stackrel{f(h_1)}{\to}& f(x_2) \\ \downarrow^{\mathrlap{\alpha}} && \downarrow^{\mathrlap{id}} \\ f(x_2) &\stackrel{f(h_2)}{\to}& f(x_2) } \,. \end{displaymath} Therefore $h_2^{-1}\circ h_1$ is a preimage of $\alpha$ under $f$, and hence $f$ is full. \end{proof} See also [[(eso+full, faithful) factorization system]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[n-truncated object in an (infinity,1)-category]] \item [[Eilenberg subcomplex]] \item [[connective spectrum]], [[connective cover]] \item [[Freudenthal suspension theorem]] \item [[Blakers-Massey theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Section 6.5.1 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} . \end{itemize} A discussion in terms of [[model category]] [[presentable (∞,1)-category|presentations]] is in section 8 of \begin{itemize}% \item [[Charles Rezk]], \emph{Toposes and homotopy toposes} (\href{http://www.math.uiuc.edu/~rezk/homotopy-topos-sketch.pdf}{pdf}) \end{itemize} [[!redirects (-2)-connected]] [[!redirects (-1)-connected]] [[!redirects 0-connected]] [[!redirects 0-connective]] [[!redirects 1-connected]] [[!redirects 1-connective]] [[!redirects 2-connected]] [[!redirects 2-connective]] [[!redirects 3-connected]] [[!redirects 3-connective]] [[!redirects 4-connected]] [[!redirects 5-connected]] [[!redirects ∞-connected]] [[!redirects ∞-connective]] [[!redirects n-connected]] [[!redirects n-connective]] [[!redirects n-connected object]] [[!redirects n-connective object]] [[!redirects n-connected objects]] [[!redirects n-connective objects]] [[!redirects n-simply connected object]] [[!redirects n-simply connected objects]] [[!redirects n-connected object in an (∞,1)-topos]] [[!redirects n-connected object in an (infinity,1)-topos]] [[!redirects n-connected object of an (∞,1)-topos]] [[!redirects n-connected objects of an (∞,1)-topos]] [[!redirects n-connected objects of (∞,1)-toposes]] [[!redirects n-connected objects of (∞,1)-topoi]] [[!redirects n-connected object of an (infinity,1)-topos]] [[!redirects n-connected objects of an (infinity,1)-topos]] [[!redirects n-connected objects of (infinity,1)-toposes]] [[!redirects n-connected objects of (infinity,1)-topoi]] [[!redirects n-simply connected object of an (∞,1)-topos]] [[!redirects n-simply connected objects of an (∞,1)-topos]] [[!redirects n-simply connected objects of (∞,1)-toposes]] [[!redirects n-simply connected objects of (∞,1)-topoi]] [[!redirects n-simply connected object of an (infinity,1)-topos]] [[!redirects n-simply connected objects of an (infinity,1)-topos]] [[!redirects n-simply connected objects of (infinity,1)-toposes]] [[!redirects n-simply connected objects of (infinity,1)-topoi]] [[!redirects n-connected object of an (∞,1)-category]] [[!redirects n-connected objects of an (∞,1)-category]] [[!redirects n-connected objects of (∞,1)-categories]] [[!redirects n-connected object of an (infinity,1)-category]] [[!redirects n-connected objects of an (infinity,1)-category]] [[!redirects n-connected objects of (infinity,1)-categories]] [[!redirects n-simply connected object of an (∞,1)-category]] [[!redirects n-simply connected objects of an (∞,1)-category]] [[!redirects n-simply connected objects of (∞,1)-categories]] [[!redirects n-simply connected object of an (infinity,1)-category]] [[!redirects n-simply connected objects of an (infinity,1)-category]] [[!redirects n-simply connected objects of (infinity,1)-categories]] [[!redirects connected object in an infinity-topos]] [[!redirects connected object of an infinity-topos]] [[!redirects n-connected object of an infinity-topos]] [[!redirects connected object in an (infinity,1)-category]] [[!redirects connected object in an (∞,1)-category]] [[!redirects connected object in an (infinity,1)-topos]] [[!redirects connected object in an (∞,1)-topos]] [[!redirects connective object]] [[!redirects n-connected morphism]] [[!redirects n-connected morphisms]] \end{document}