\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{n-fold category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{internal_categories}{}\paragraph*{{Internal categories}}\label{internal_categories} [[!include internal infinity-categories contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{fold_categories}{$n$-fold categories}\dotfill \pageref*{fold_categories} \linebreak \noindent\hyperlink{advantages}{Advantages}\dotfill \pageref*{advantages} \linebreak \noindent\hyperlink{fold_groupoids}{$n$-fold groupoids}\dotfill \pageref*{fold_groupoids} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{CartesianClosure}{Cartesian closure}\dotfill \pageref*{CartesianClosure} \linebreak \noindent\hyperlink{homotopy_types}{Homotopy types}\dotfill \pageref*{homotopy_types} \linebreak \noindent\hyperlink{relation_to_strict_globular_categories}{Relation to strict globular $\omega$-categories}\dotfill \pageref*{relation_to_strict_globular_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{$n$-fold category} is what is obtained by iterating the process of forming [[internal categories]] $n$-times, starting with sets: an $0$-fold category is just an object of the ambient category (say a [[set]]) and then inductively an $n+1$-fold category is a [[internal category]] in the category of $n$-fold categories. If the ambient category is instead an [[(∞,1)-category]] such as [[∞Grpd]], then an $n$-fold category is an ``[[n-fold Segal space]]''. If a ``completeness'' condition is added (analogous to ``globularity'' of an n-fold category), one obtaines an [[n-fold complete Segal space]], which is a model for $(\infty,n)$-categories. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{fold_categories}{}\subsubsection*{{$n$-fold categories}}\label{fold_categories} A \textbf{$0$-fold category} is a [[set]]. A (strict) \textbf{$n$-fold category} for $n \gt 0$ is an [[internal category]] in the category of $(n-1)$-fold categories. An $n$-fold category is also known as an \textbf{$n$-tuple category}. In particular: \begin{itemize}% \item A $1$-fold category is precisely a [[category]]. \item A $2$-fold category is precisely a [[double category]] (introduced by [[Charles Ehresmann]] in 1963). \item A $3$-fold category is precisely a [[triple category]]. \end{itemize} \hypertarget{advantages}{}\subsection*{{Advantages}}\label{advantages} A key advantage of $n$-fold categories is the ease of expressing multiple compositions, and so the idea of ``algebraic inverse to subdivision''. This is important because subdivision is a key tool in many local-to-global problems in mathematics and science, and these themselves are an important class of problems. Thus subdividing an $n$-cube amounts to dividing the cube into small cubes by hyperplanes parallel to the faces. For a $2$-fold category, we can define a \emph{composable array} $(a_{ij})$ of $2$-dimensional elements (called squares) to be such that any $a_{ij}$ is composable with its immediate neighbours. In such case, the associative and interchange laws imply that the composition $[a_{ij}]$ is well defined. This process is easily extended to $n$-fold categories, using elements say $a_{(r)}$ where $(r)$ is multi-index, and is applied widely in the JPAA papers by Brown and Higgins listed below. It seems much more difficult to express these ideas in the globular or simplicial contexts. \hypertarget{fold_groupoids}{}\subsubsection*{{$n$-fold groupoids}}\label{fold_groupoids} Analogously, a \textbf{$0$-fold groupoid} is again a set, and an \textbf{$n$-fold groupoid} is an [[internal groupoid]] in $(n-1)$-fold groupoids; in particular, a $1$-fold groupoid is a [[groupoid]]. Analogous to how a [[group]] is a groupoid with a single object, one can consider $(n+1)$-fold groupoids for which all morphisms in one of the $(n+1)$ directions are endomorphisms. These are the \emph{[[cat-n-groups]]}. More generally, an \textbf{$(n,r)$-fold groupoid} is an $r$-fold category in $(n-r)$-fold groupoids; compare $(n,r)$-[[(n,r)-category|category]]. Note also that a category object in the category of groups is actually a groupoid object. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{CartesianClosure}{}\subsubsection*{{Cartesian closure}}\label{CartesianClosure} The category of $n$-fold categories is a [[cartesian closed category]]. By [[induction]] from the statement at \emph{\href{internal+category#CartesianClosure}{Internal category - Cartesian closure}}. \hypertarget{homotopy_types}{}\subsubsection*{{Homotopy types}}\label{homotopy_types} Even though an $n$-fold category is a \emph{strict} version of an [[n-category]] in that all $n$ composition operations are strictly unital and associative and strictly commute with each other, still $n$-fold \emph{groupoids} model all [[homotopy n-types]]. See [[homotopy hypothesis]]. \hypertarget{relation_to_strict_globular_categories}{}\subsubsection*{{Relation to strict globular $\omega$-categories}}\label{relation_to_strict_globular_categories} By a theorem by Al-Agl, Brown and Steiner, [[strict omega-category|strict omega-categories]] are equivalent to those $\infty$-fold categories that satisfy a couple of restrictive properties (something like that all 1-categories of $n$-cells for all $n$ are the same and that all the ``thin'' identity elements exist, called ``connections''): these are the ``cubical $\omega$-categories with connections''. Because it is relatively straightforward to define a monoidal closed category in the cubical theory, using the formula $I^m \otimes I^n = I^{m+n}$, this leads to a monoidal closed structure for strict globular $\omega$ categories. This is a category version of a corresponding groupoid theorem of Brown and Higgins which follows from the two papers listed below. [[Jean-Louis Loday]] introduced in the paper listed below the category of what he called $n$-cat groups, but are now called cat$^n$-groups as they are exactly $n$-fold groupoids internal to the category of groups. He showed that these objects model weak, pointed homotopy $n$-types, see [[homotopy hypothesis]]. The paper by Brown and Loday shows that these structures can be used, via a van Kampen type theorem, for explicit computations in homotopy theory, and this is further developed in the paper by Ellis and Steiner. This paper relates the theory to that of crossed modules, $n$-ad homotopy groups, and the important $n$-ad connectivity theorem, which is related to results on homotopical excision. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[double groupoid]] \item [[double bicategory]] \item [[cat-n-group]] \item [[crossed n-cube]] \item [[n-fold complete Segal space]] \item [[(n × k)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Ronnie Brown]] and P.J. Higgins, The equivalence of $\infty$-groupoids and crossed complexes, Cah. Top. G'eom. Diff. 22 (1981) 371--386. \item [[Ronnie Brown]] and P.J. Higgins. On the algebra of cubes, J. Pure Appl. Algebra, 21 (1981) 233-260. \item G.J. Ellis, and R.J. Steiner. Higher-dimensional crossed modules and the homotopy groups of $(n+1)$-ads, J. Pure Appl. Algebra, 46 \{1987\} 117--136. \item J.-L. Loday. Spaces with finitely many nontrivial homotopy groups, J. Pure Appl. Algebra, 24 (1982) 179--202. \item [[Ronnie Brown]] and J.-L. Loday. Van Kampen theorems for diagrams of spaces. Topology 26 (1987) 311--335. With an appendix by M. Zisman. \item [[Ronnie Brown]], and J.-L. Loday. Homotopical excision, and Hurewicz theorems for $n$-cubes of spaces. Proc. London Math. Soc. (3) 54 (1987) 176--192. \item F.A. Al-Agl, [[Ronnie Brown]] and R.J. Steiner, Multiple categories: the equivalence between a globular and cubical approach, Advances in Mathematics, 170 (2002) 71--118. \item S. Paoli. Internal categorical structures in homotopical algebra. In Towards higher categories, 85--103, IMA Vol. Math. Appl., 152, Springer, New York, 2010. \item T. M. Fiore and S. Paoli. A Thomason model structure on the category of small $n$-fold categories. Algebr. Geom. Topol. 10 (2010) 1933---2008. \end{itemize} [[!redirects n-fold categories]] [[!redirects n-tuple category]] [[!redirects n-tuple categories]] [[!redirects n-fold groupoid]] [[!redirects n-fold groupoids]] \end{document}