\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{n-fold complete Segal space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{internal_categories}{}\paragraph*{{Internal $(\infty,1)$-Categories}}\label{internal_categories} [[!include internal infinity-categories contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{fold_segal_objects}{$n$-fold Segal objects}\dotfill \pageref*{fold_segal_objects} \linebreak \noindent\hyperlink{complete_fold_segal_spaces}{Complete $n$-fold Segal spaces}\dotfill \pageref*{complete_fold_segal_spaces} \linebreak \noindent\hyperlink{definition_via_the_model_category_of_simplicial_sets}{Definition via the model category of simplicial sets}\dotfill \pageref*{definition_via_the_model_category_of_simplicial_sets} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{$n$-fold complete Segal spaces} are a model for [[(∞,n)-category|(∞,n)-categories]], i.e. the [[homotopy theory|homotopical]] version of [[n-category|n-categories]]. We can view [[strict n-category|strict n-categories]] as [[n-fold category|n-fold categories]] where part of the structure is trivial; for example, strict 2-categories can be described as double categories where the only vertical morphisms are identities. $n$-fold Segal spaces similarly result from viewing $(\infty,n)$-categories as a special class of $n$-fold internal $(\infty,1)$-categories in [[∞Grpd|∞-groupoids]]. If $\mathcal{C}$ is an $(\infty,1)$-category, then $(\infty,1)$-categories [[category object in an (infinity,1)-category|internal]] to $\mathcal{C}$ can be defined as certain simplicial objects in $\mathcal{C}$ (namely those satisfying the ``Segal condition''). Thus $n$-fold internal $(\infty,1)$-categories in $\infty$-groupoids correspond to a class of $n$-simplicial $\infty$-groupoids, and $n$-fold Segal spaces are defined by additionally specifying certain constancy conditions. To describe the correct homotopy theory of $(\infty,n)$-categories we also want to regard the fully faithful and essentially surjective morphisms between $n$-fold Segal spaces as equivalences. It turns out that, just as in the case of [[Segal spaces]], the localization at these maps can be accomplished by restricting to a full subcategory of \emph{complete} objects. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{fold_segal_objects}{}\subsubsection*{{$n$-fold Segal objects}}\label{fold_segal_objects} If $\mathcal{C}$ is an $(\infty,1)$-category with pullbacks, we say that a simplicial object $X_\bullet : \Delta^{op} \to \mathcal{C}$ satisfies the [[Segal condition]] if the squares \begin{displaymath} \itexarray{ X_{m+n} &\to& X_{n} \\ \downarrow && \downarrow \\ X_{m} &\to& X_{0} } \end{displaymath} are all pullbacks. Such \emph{Segal objects} give the $(\infty,1)$-categorical version of [[internal category|internal categories]] as \emph{algebraic} structures. (I.e. we have not inverted a class of fully faithful and essentially surjective morphisms.) If $Seg(\mathcal{C})$ denotes the full subcategory of $Fun(\Delta^{op}, \mathcal{C})$ spanned by the Segal objects, then this is again an $(\infty,1)$-category with pullbacks, so we can iterated the definition to obtain a full subcategory $Seg^{n}(\mathcal{C})$ of $Fun(\Delta^{n,op}, \mathcal{C})$ of \emph{Segal $\Delta^{n}$-objects} in $\mathcal{C}$. We can now inductively define $n$-fold Segal objects by imposing constancy conditions: An \emph{$n$-fold Segal object} in $\mathcal{C}$ is a Segal $\Delta^{n}$-object $X$ such that \begin{enumerate}% \item The $(n-1)$-simplicial object $X_0 : \Delta^{n-1,op} \to \mathcal{C}$ is constant \item The $(n-1)$-simplicial objects $X_i$ are $(n-1)$-fold Segal objects for all $i$. \end{enumerate} When $\mathcal{C}$ is the $(\infty,1)$-category of spaces (or $\infty$-groupoids) we refer to $n$-fold Segal objects as \emph{$n$-fold Segal spaces}. \hypertarget{complete_fold_segal_spaces}{}\subsubsection*{{Complete $n$-fold Segal spaces}}\label{complete_fold_segal_spaces} We now define fully faithful and essentially surjective morphisms between $n$-fold Segal inductively in terms of the corresponding notions for [[Segal spaces]]: \begin{defn} \label{}\hypertarget{}{} A morphism $X \to Y$ between $n$-fold Segal spaces is \emph{fully faithful and essentially surjective} if: \begin{enumerate}% \item $X_{\bullet,0,\ldots,0} \to Y_{\bullet,0,\ldots,0}$ is a fully faithful and essentially surjective morphism of Segal spaces \item $X_{1,\bullet,\ldots,\bullet} \to Y_{1,\bullet,\ldots,\bullet}$ is a fully faithful and essentially surjective morphism of $(n-1)$-fold Segal spaces \end{enumerate} \end{defn} \begin{defn} \label{}\hypertarget{}{} An $n$-fold Segal space $X$ is \emph{complete} if: \begin{enumerate}% \item The Segal space $X_{\bullet,0,\ldots,0}$ is complete. \item The $(n-1)$-fold Segal space $X_{1,\bullet,\ldots,\bullet}$ is complete. \end{enumerate} \end{defn} \begin{remark} \label{}\hypertarget{}{} There are several equivalent ways to reformulate these inductive definitions. For example, a morphism $f : X \to Y$ is fully faithful and essentially surjective if and only if: \begin{enumerate}% \item $X_{\bullet,0,\ldots,0} \to Y_{\bullet,0,\ldots,0}$ is essentially surjective. \item For all objects $x,x' \in X_{0,\ldots,0}$ the induced map on $(n-1)$-fold Segal spaces of morphisms $X(x,x') \to Y(fx,fx')$ is fully faithful and essentially surjective. \end{enumerate} \end{remark} \begin{theorem} \label{}\hypertarget{}{} The complete $n$-fold Segal spaces are precisely the $n$-fold Segal spaces that are local with respect to the fully faithful and essentially surjective morphisms. Thus the localization of the $(\infty,1)$-category of $n$-fold Segal spaces at this class of morphisms is equivalent to the full subcategory of complete $n$-fold Segal spaces. \end{theorem} This was first proved in Barwick's \hyperlink{BarwickThesis}{thesis}, generalizing Rezk's proof in the case $n=1$. Later, \hyperlink{Lurie09}{Lurie} extended the notion of complete Segal objects to more general contexts than spaces, which allows an inductive definition of complete $n$-fold Segal spaces as complete Segal objects in complete $(n-1)$-fold Segal spaces. The theorem for $n$-fold Segal spaces then follows by inductively applying the generalization of Rezk's theorem (for the case $n=1$) to this setting. \hypertarget{definition_via_the_model_category_of_simplicial_sets}{}\subsubsection*{{Definition via the model category of simplicial sets}}\label{definition_via_the_model_category_of_simplicial_sets} (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Theta-spaces]], [[Segal n-categories]] \item [[higher Segal space]] \item [[semi-Segal space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The definition originates in the thesis \begin{itemize}% \item [[Clark Barwick]], \emph{$(\infty,n)$-$Cat$ as a closed model category} PhD (2005) \end{itemize} which however remains unpublished. It appears in print in section 12 of \begin{itemize}% \item [[Clark Barwick]], [[Chris Schommer-Pries]], \emph{On the Unicity of the Homotopy Theory of Higher Categories} (\href{http://arxiv.org/abs/1112.0040}{arXiv:1112.0040}, \href{http://prezi.com/w0ykkhh5mxak/the-uniqueness-of-the-homotopy-theory-of-higher-categories/}{slides}) \end{itemize} The basic idea was being popularized and put to use in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[On the Classification of Topological Field Theories]]} \end{itemize} A detailed discussion in the general context of [[internal categories in an (∞,1)-category]] is in section 1 of \begin{itemize}% \item [[Jacob Lurie]], \emph{$(\infty,2)$-Categories and the Goodwillie Calculus I} (\href{http://arxiv.org/abs/0905.0462}{arXiv:0905.0462}) \end{itemize} A textbook account is in \begin{itemize}% \item [[Simona Paoli]], \emph{Simplicial Methods for Higher Categories -- Segal-type Models of Weak $n$-Categories}, Springer 2019 (\href{https://doi.org/10.1007/978-3-030-05674-2}{doi:10.1007/978-3-030-05674-2}, \href{https://link.springer.com/content/pdf/bfm%3A978-3-030-05674-2%2F1.pdf}{toc pdf}) \end{itemize} For related references see at \emph{[[(∞,n)-category]]} . [[!redirects n-fold Segal space]] [[!redirects n-fold complete Segal spaces]] [[!redirects n-fold Segal spaces]] \end{document}