\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{n-image} [[!redirects infinity-image]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ViaEpiMonoFactorization}{By epi/mono factorization in an $(\infty,1)$-topos}\dotfill \pageref*{ViaEpiMonoFactorization} \linebreak \noindent\hyperlink{ViaColimitOfCechNerve}{As the ∞-colimit of the kernel ∞-groupoid}\dotfill \pageref*{ViaColimitOfCechNerve} \linebreak \noindent\hyperlink{tower_of_images}{Tower of $n$-images}\dotfill \pageref*{tower_of_images} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{SyntaxInHomotopyTypeTheory}{Syntax in homotopy type theory}\dotfill \pageref*{SyntaxInHomotopyTypeTheory} \linebreak \noindent\hyperlink{compatibility_with_limits}{Compatibility with limits}\dotfill \pageref*{compatibility_with_limits} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{automorphisms}{Automorphisms}\dotfill \pageref*{automorphisms} \linebreak \noindent\hyperlink{NImagesOf1FunctorsBetweenGroupoids}{Of functors between groupoids}\dotfill \pageref*{NImagesOf1FunctorsBetweenGroupoids} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The generalization of the notion of \emph{[[image]]} from [[category theory]] to [[(∞,1)-category theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{ViaEpiMonoFactorization}{}\subsubsection*{{By epi/mono factorization in an $(\infty,1)$-topos}}\label{ViaEpiMonoFactorization} Let $\mathbf{H}$ be an [[(∞,1)-topos]]. Then by the discussion at \emph{[[(n-connected, n-truncated) factorization system]]} there is a [[orthogonal factorization system in an (∞,1)-category|orthogonal factorization system]] \begin{displaymath} (Epi(\mathbf{H}), Mono(\mathbf{H})) \subset Mor(\mathbf{H}) \times Mor(\mathbf{H}) \end{displaymath} whose left class consists of the [[n-connected object in an (∞,1)-topos|(-1)-connected]] morphisms , the [[effective epimorphism in an (∞,1)-category|(∞,1)-effective epimorphisms]], while the right class consists of the [[n-truncated object in an (∞,1)-category|(-1)-truncated morphisms]] morphisms, hence the [[monomorphism in an (∞,1)-category|(∞,1)-monomorphisms]]. So given a morphism $f : X \to Y$ in $\mathbf{H}$ with epi-mono factorization \begin{displaymath} f : X \to im_1(f) \hookrightarrow Y \,, \end{displaymath} we may call $im_1(f) \hookrightarrow Y$ the \textbf{image} of $f$. \hypertarget{ViaColimitOfCechNerve}{}\subsubsection*{{As the ∞-colimit of the kernel ∞-groupoid}}\label{ViaColimitOfCechNerve} In a sufficiently well-behaved 1-[[category]], the [[coimage|(co)image]] of a morphism $f \colon X \to Y$ may be defined as the [[coequalizer]] of its [[kernel pair]], hence by the fact that \begin{displaymath} X \times_Y X \stackrel{\longrightarrow}{\longrightarrow} X \stackrel{}{\longrightarrow} im(f) \end{displaymath} is a [[colimit|colimiting]] [[cocone]] under the [[parallel morphism]] [[diagram]]. In an [[(∞,1)-topos]] the 1-image is the [[(∞,1)-colimit]] not just of these two morphisms, but of the full ``$\infty$-kernel'', namely of the full [[Cech nerve]] [[simplicial object]] \begin{displaymath} \cdots \stackrel{\longrightarrow}{\stackrel{\longrightarrow}{\stackrel{\longrightarrow}{\longrightarrow}}} X \times_Y X \times_Y X \stackrel{\longrightarrow}{\stackrel{\longrightarrow}{\longrightarrow}} X \times_Y X \stackrel{\longrightarrow}{\longrightarrow} X \stackrel{}{\longrightarrow} im(f) \,. \end{displaymath} (Here all degeneracy maps are notionally suppressed.) To see that this gives the same notion of image as given by the epi-mono factorization as discussed \hyperlink{ViaEpiMonoFactorization}{above}, let $f \colon X \stackrel{f}{\longrightarrow} im(f) \hookrightarrow Y$ be such a factorization. Then using (by the discussion at \emph{\href{n-truncated+object+of+an+%28infinity%2C1%29-category#RecursiveDefinition}{truncated morphism -- Recursive characterization}}) that the [[(∞,1)-pullback]] of a [[monomorphism in an (∞,1)-category|monomorphism]] is its domain, we find a [[pasting diagram]] of [[(∞,1)-pullback]] squares of the form \begin{displaymath} \itexarray{ X \times_{im(f)} X &\to & X &\stackrel{\simeq}{\to} & X \\ \downarrow && \downarrow^{\mathrlap{f}} && \downarrow^{\mathrlap{f}} \\ X &\stackrel{f}{\to}& im(f) &\stackrel{\simeq}{\to}& im(f) \\ \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} && \downarrow \\ X &\stackrel{f}{\to}& im(f) &\hookrightarrow& Y } \,, \end{displaymath} which shows, by the [[pasting law]], that $X \times_{Y} X \simeq X \times_{im(f)} X$ and hence that the [[Cech nerve]] of $X \stackrel{f}{\to} Y$ is equivalently that of the effective epimorphism $X \stackrel{f}{\to} im(f)$. Now, by one of the [[Giraud-Rezk-Lurie axioms]] satisfied by [[(∞,1)-toposes]], the [[(∞,1)-colimit]] over the [[Cech nerve]] of an [[effective epimorphism in an (∞,1)-category|effective epimorphism]] is that morphism itself. Therefore the 1-image defined this way coincides with the one defined by the epi/mono factorization. \hypertarget{tower_of_images}{}\subsubsection*{{Tower of $n$-images}}\label{tower_of_images} More generally for $f \colon X \to Y$ a morphism we have a [[tower]] of $n$-images \begin{displaymath} X \simeq im_\infty(f) \to \cdots \to im_2(f) \to im_1(f) \to im_0(f) \simeq Y \end{displaymath} factoring $f$, such that for each $n \in \mathbb{N}$ the factorization $X \to im_{n+2}(f) \to Y$ is the [[(n-connected, n-truncated) factorization system]] of $f$. This is the relative [[Postnikov system]] of $f$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{SyntaxInHomotopyTypeTheory}{}\subsubsection*{{Syntax in homotopy type theory}}\label{SyntaxInHomotopyTypeTheory} Let the ambient [[(∞,1)-category]] be an [[(∞,1)-topos]] $\mathbf{H}$. Then its [[internal language]] is [[homotopy type theory]]. We discuss the [[syntax]] of 1-images in this theory. \begin{prop} \label{SyntaxOfInfinityImage}\hypertarget{SyntaxOfInfinityImage}{} If \begin{displaymath} a\colon A \;\vdash \; f(a) \colon B \end{displaymath} is a [[term]] whose [[categorical semantics]] is a [[morphism]] $A \xrightarrow{f} B$ in $\mathbf{H}$, then the 1-image of that morphism, when regarded as an object of $\mathbf{H}/B$, is the categorical semantics of the [[dependent type]] \begin{displaymath} (b:B) \; \vdash \; \Big(\Big[ \sum_{a \colon A} (b = f(a)) \Big] : Type\Big). \end{displaymath} \end{prop} Here $=$ denotes the [[identity type]] or ``path type'', $\sum$ denotes the [[dependent sum type]], and $[-]$ denotes the [[bracket type]] (which is constructible in homotopy type theory either as a [[higher inductive type]] or using the [[univalence axiom]] and a resizing rule to obtain a [[subobject classifier]]). \begin{proof} Let $\mathbf{M}$ be a suitable [[model category]] [[presentable (∞,1)-category|presenting]] $\mathbf{H}$. Then by the rules for [[categorical semantics]] of [[identity types]] and [[substitution]], the interpretation of \begin{displaymath} (b:B),\, (a:A) \;\vdash\; ((b = f(a)) : Type) \end{displaymath} in $\mathbf{M}$ a is the following [[pullback]] $\tilde A$ (see \emph{[[homotopy pullback]]} for more details): \begin{displaymath} \itexarray{ \tilde A &\to& B^{I} \\ \downarrow && \downarrow \\ A \times B &\stackrel{(f,id_B)}{\to}& B \times B }. \end{displaymath} Here all objects now denote [[fibrant object]] representatives of the given objects in $\mathbf{H}$, and the right-hand morphism is the [[fibration]] out of a [[path space object]] for $B$. By the [[factorization lemma]] the composite $\tilde A \to A \times B \to B$ here is a [[fibration]] [[resolution]] of the original $A \stackrel{f}{\to} B$ and $\tilde A \to A \times B$ is a fibration resolution of $A \stackrel{(id_A,f)}{\to} A \times B$. Regarded in the [[slice category]] $\mathbf{M}/(A \times B)$, this now interprets the syntax $(b = f(a))$ as an $(A \times B)$-[[dependent type]]. Now the interpretation of the sum $\sum_{a:A}$ is simply that we forget the map to $A$ (or equivalently compose with the projection $A\times B\to B$), regarding $\tilde A$ as an object of $\mathbf{M}/B$. Of course, this is just a fibration resolution of $f$ itself. Finally, the interpretation of the [[bracket type]] of this is precisely the [[n-truncated object in an (infinity,1)-category|(-1)-truncation]] of this morphism, which by the discussion there is its 1-image $im_1(\tilde A \to B)$, regarded as a dependent type over $B$. Thus, it is precisely the the 1-image of $f$. \end{proof} By additionally forgetting the remaining map to $B$, we obtain: \begin{cor} \label{NonDependentSyntax}\hypertarget{NonDependentSyntax}{} In the above situation, the 1-image of $f$, regarded as an object of $\mathbf{H}$ itself, is the semantics of the non-dependent type \begin{displaymath} \vdash \; \Big(\Big( \sum_{b:B}\Big[\sum_{a:A} (b = f(a))\Big] \Big) : Type\Big). \end{displaymath} \end{cor} \begin{remark} \label{}\hypertarget{}{} The bracket type of a [[dependent sum]] is the [[propositions as some types]] version of the [[existential quantifier]], so we can write the dependent type in Prop. \ref{SyntaxOfInfinityImage} as \begin{displaymath} (b:B) \; \vdash \; \left(\exists a:A . (b = f(a)) \;:\; hProp\right). \end{displaymath} The dependent sum \emph{of} an [[h-proposition]] is then the propositions-as-some-types version of the [[comprehension rule]], $\{b \in B | \phi(b)\}$, so the non-dependent type in Cor. \ref{NonDependentSyntax} may be written as \begin{displaymath} \left\{ b \in B \,|\, \exists a \in A . (b = f(a)) \right\} \end{displaymath} which is manifestly the naive definition of [[image]]. \end{remark} \hypertarget{compatibility_with_limits}{}\subsubsection*{{Compatibility with limits}}\label{compatibility_with_limits} \begin{prop} \label{nImagePreservesProducts}\hypertarget{nImagePreservesProducts}{} In an [[(∞,1)-topos]] $\mathbf{H}$, the $n$-image of a product is the product of $n$-images: \begin{displaymath} im_n\left(X_1 \times X_2 \stackrel{(f,g)}{\longrightarrow}) X_2 \times Y_2\right) \simeq \left( im_n(f) \times im_n(g) \longrightarrow X_2 \times Y_2 \right) \,. \end{displaymath} \end{prop} \begin{proof} The morphism $(f,g)$ is the product of $(f,id)$ with $(g,id)$ in the [[slice (∞,1)-topos]] over $X_2 \times Y_2$, namely there is a [[homotopy fiber product]] in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ && X_1 \times Y_1 \\ & {}^{\mathllap{(id,g)}}\swarrow && \searrow^{\mathrlap{(f,id)}} \\ X_1 \times Y_2 && \swArrow_{\simeq} && X_2 \times Y_1 \\ & {}_{\mathllap{(f,id)}}\searrow && \swarrow_{\mathrlap{(id,g)}} \\ && X_2 \times Y_2 } \end{displaymath} But by \href{n-truncated+object+of+an+infinity-category#nTruncationInToposPreservesFiniteProducts}{this proposition}, $n$-truncation in the slice $\infty$-topos preserves products, so that \begin{displaymath} \begin{aligned} im_n(f,g) & = \tau_n (f,g) \\ & \simeq \tau_n ((f,id)\times_{X_2 \times Y_1} (id,g)) \\ &\simeq (\tau_n(f,id)) \times_{X_2 \times Y_2} (\tau_n(id,g)) \\ & \simeq (im_n f, id)\times_{X_2 \times Y_2} (id, im_n g) \\ & \simeq (im_n f, im_n g) \end{aligned} \,. \end{displaymath} \end{proof} \begin{prop} \label{}\hypertarget{}{} The $n$-image of the [[looping]] of a morphism $f \colon X \to Y$ of [[pointed objects]] is the looping of its $(n+1)$-image \begin{displaymath} im_n (\Omega(f)) \simeq \Omega(im_{n+1}(f)) \,. \end{displaymath} i.e. we have the following diagram, where the columns are [[homotopy fiber sequences]] \begin{displaymath} \itexarray{ \Omega f \colon & \Omega X &\longrightarrow& im_n(\Omega f) &\longrightarrow& \Omega Y \\ & \downarrow && \downarrow && \downarrow \\ id_\ast \colon & \ast &\longrightarrow & im_{n+1}(id_\ast) \simeq \ast &\longrightarrow& \ast \\ & \downarrow && \downarrow && \downarrow \\ f\colon & X &\stackrel{}{\longrightarrow}& im_{n+1}(f) &\stackrel{}{\longrightarrow}& Y } \end{displaymath} \end{prop} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{automorphisms}{}\subsubsection*{{Automorphisms}}\label{automorphisms} Let $V \in \mathbf{H}$ be a $\kappa$-[[compact object in an (∞,1)-category|small object]], and let \begin{displaymath} * \stackrel{\vdash V}{\to} Obj_\kappa \end{displaymath} the corresponding morphism to the [[object classifier]]. Then the 1-image of this is $\mathbf{B}\mathbf{Aut}(V)$, the [[delooping]] of the internal [[automorphism ∞-group]] of $V$. \hypertarget{NImagesOf1FunctorsBetweenGroupoids}{}\subsubsection*{{Of functors between groupoids}}\label{NImagesOf1FunctorsBetweenGroupoids} The simplest nontivial case of higher images after the ordinary case of images of functions of sets is images of [[functors]] between [[groupoids]] hence betwee [[1-truncated]] objects $X, Y \in Grpd \hookrightarrow$ [[∞Grpd]]. \begin{prop} \label{FactorizationOf1FunctorsBetween1Groupoids}\hypertarget{FactorizationOf1FunctorsBetween1Groupoids}{} For $f \colon X \to Y$ a [[functor]] between [[groupoids]], its image factorization is \begin{displaymath} f \colon X \to im_2(f) \to im_1(f) \to Y \,, \end{displaymath} where (up to [[equivalence of groupoids]]) \begin{itemize}% \item $im_1(f) \to Y$ is the [[full subcategory|full subgroupoid]] of $Y$ on those objects $y$ such that there is an object $x \in X$ with $f(x) \simeq y$; \item $im_2(f)$ is the groupoid whose objecs are those of $X$ and whose morphisms are equivalence classes of morphisms in $X$ where $\alpha,\beta \in Mor(X)$ are equivalent if they have the same domain and codomain in $X$ and if $f(\alpha) = f(\beta)$ \begin{itemize}% \item $im_2(f)\to im_1(f)$ is the identity on objects and the canonical inclusion on sets of morphisms; \item $X \to im_2(f)$ is the identity on objects and the defining [[quotient]] map on sets of morphisms. \end{itemize} \end{itemize} \end{prop} \begin{proof} Evidently $im_1(f) \to Y$ is a [[fibration]] ([[isofibration]]) and so the [[homotopy fiber]] over every point is given by the 1-categorical [[pullback]] \begin{displaymath} \itexarray{ F_y &\to& im_1(y) \\ \downarrow && \downarrow \\ * &\stackrel{y}{\to}& Y } \,. \end{displaymath} If there is no $x \in X$ such that $f(x) \simeq y$ then fiber $F_y$ is [[empty set]]. If there is such $x$ then the fiber is the groupoid with that one object and all morphisms in $X$ on that object which are mapped to the identity morphism, which by construction is only the identity morphism itself, hence the fiber is the point. Hence indeed the homotopy fibers of $im_1(f) \to Y$ are [[(-1)-truncated]] objects and the map from homotopy fiber of $f$ to those of $im_1(f)$ is their (-1)-truncation. Next, the [[homotopy fibers]] of $im_2(f) \to Y$ over a point $y \in Y$ are the groupoids whose objects are pairs $(x, (f(x) \to y))$ and whose morphisms are pairs \begin{displaymath} \left( \itexarray{ x_1 &\stackrel{[\alpha]}{\to}& x_2 \\ f(x_1) &\stackrel{f(\alpha)}{\to}& f(x_2) \\ \downarrow && \downarrow \\ y &=& y } \right) \,. \end{displaymath} Notice first that the above is [[0-truncated]]: an automorphism of $(x,(f(x) \to y))$ is of the form $x \stackrel{[\alpha]}{to} x$ such that $f(\alpha) = id_{f(x)}$ and so there is precisely one such, namely the equivalence class of $id_x$. Notice second that the homotopy fibers of $f$ itself have the same form, only that $\alpha \colon x_1 \to x_2$ appears itself, not as its equivalence class. Also if two objects in the homotopy fiber of $f$ are connected by a morphism, then by construction so they are in the homotopy fiber of $im_2(f) \to Y$ and hence the latter is indeed the [[0-truncation]] of the former. \end{proof} \begin{remark} \label{}\hypertarget{}{} The factroization $f \colon X \to im_2(f) \to im_1(f) \to Y$ of prop. \ref{FactorizationOf1FunctorsBetween1Groupoids} exhibits a \emph{[[ternary factorization system]]} in [[Grpd]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} This situation can also be considered from the perspective of the formalization of [[stuff, structure, property]]. See there at \emph{\href{stuff%2C+structure%2C+property#AFactorizationSystem}{A factorization system}}. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[image]], [[coimage]] \item [[homotopy image]] \item [[Postnikov system]] \item [[k-ary factorization system]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion of $n$-image factorization in [[homotopy type theory]] is in \begin{itemize}% \item [[Univalent Foundations Project]], section 7.6 of \emph{[[Homotopy Type Theory -- Univalent Foundations of Mathematics]]} \end{itemize} A construction of $n$-image factorizations in [[homotopy type theory]] using only [[homotopy pushouts]] and specifically [[join of topological spaces|joins]] (instead of more general [[higher inductive types]]) is described in \begin{itemize}% \item [[Egbert Rijke]], \emph{The join construction} (\href{https://arxiv.org/abs/1701.07538}{arXiv:1701.07538}) \end{itemize} [[!redirects ∞-image]] [[!redirects ∞-images]] [[!redirects infinity-images]] [[!redirects n-image]] [[!redirects n-images]] [[!redirects n-image]] [[!redirects n-images]] [[!redirects 0-image]] [[!redirects 0-images]] [[!redirects 1-image]] [[!redirects 1-images]] [[!redirects 2-image]] [[!redirects 2-images]] [[!redirects 3-image]] [[!redirects 3-images]] \end{document}