\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{n-types cover} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{types_cover}{}\section*{{$n$-types cover}}\label{types_cover} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{in_a_higher_category}{In a higher category}\dotfill \pageref*{in_a_higher_category} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_homotopy_type_theory}{In homotopy type theory}\dotfill \pageref*{in_homotopy_type_theory} \linebreak \noindent\hyperlink{InModels}{In models}\dotfill \pageref*{InModels} \linebreak \noindent\hyperlink{relation_to_other_axioms}{Relation to other axioms}\dotfill \pageref*{relation_to_other_axioms} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The property that \textbf{$n$-types cover} is a property of a [[higher category theory|higher category]], or an [[axiom]] in its corresponding [[internal logic]], which says roughly that every [[object]] is [[cover|covered]] by one that is [[truncated object|truncated]] at some level. \hypertarget{in_a_higher_category}{}\subsection*{{In a higher category}}\label{in_a_higher_category} A [[n-category|higher category]] is said to satisfy the (external) property that \textbf{$n$-types cover}, or to have \textbf{enough $n$-types}, if for every [[object]] $X$ there exists an $n$-[[truncated object]] $Y$ and an [[effective epimorphism in an (∞,1)-category|effective epimorphism]] $Y\to X$. When $n=0$ one also says that \textbf{sets cover} or that there are \textbf{enough sets}. Usually the category in question is some sort of [[topos]] or [[higher topos]], or at least a [[pretopos]] of an appropriate sort. In this case, the property that $n$-types cover means that the [[subcategory]] of $n$-[[truncated objects]] is ``generating'' in an appropriate sense. When $n=-1$, however, having enough $n$-types in this sense is not really a useful notion, because $(-1)$-truncated objects ([[subterminal objects]]) are not closed under [[coproducts]]. In this case a better condition is that all maps out of subterminal objects are jointly [[effective epimorphism|effective epimorphic]]. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} If $n\gt 0$, then any [[n-localic (∞,1)-topos]] has enough $(n-1)$-types, since every object is surjected onto by a coproduct of [[representable functor|representables]] which are $n$-truncated. The converse seems plausible as well. A specific example of a higher topos in which sets do not cover is the [[slice (∞,1)-topos]] $\infty Gpd / \mathbf{B}^2 \mathbb{Z}$ of [[∞Grpd]] over the double [[delooping]] of the group of [[integers]], which is equivalently the topos of [[∞-actions]] of the [[∞-group]] ([[2-group]]) $\mathbf{B} \mathbb{Z}$. From this second perspective, a 1-truncated object of this topos is a [[groupoid]] (1-groupoid) together with an [[automorphism]] of its [[identity]] [[functor]], i.e. an element of its [[center]], and a morphism of such is a functor that respects these central elements. Such an object is 0-truncated if it is essentially discrete, in which case its center is also trivial; thus the 0-truncated objects are just ordinary sets. However, since functors must respect the central elements, there can be no surjective map from a 0-truncated object to a 1-truncated one whose chosen central element is nontrivial. \hypertarget{in_homotopy_type_theory}{}\subsection*{{In homotopy type theory}}\label{in_homotopy_type_theory} In [[homotopy type theory]], the (internal) axiom of \textbf{$n$-types cover} or \textbf{enough $n$-types} says that for any type $X$ there [[merely]] exists an $n$-type $Y$ and a surjection (i.e. a [[n-epimorphism|(-1)-connected map]]) $Y\to X$. In symbols: \begin{displaymath} \prod_{(X:Type)} {\Vert \sum_{(Y:n Type)} \sum_{(f:Y\to X)} surj(f) \Vert } \end{displaymath} where $\Vert-\Vert$ denotes the $(-1)$-truncation. As before, when $n=0$ we say that \textbf{[[h-set|sets]] cover} or that there are \textbf{enough sets}. \hypertarget{InModels}{}\subsubsection*{{In models}}\label{InModels} \begin{theorem} \label{}\hypertarget{}{} If an $(\infty,1)$-topos satisfies the external property that $n$-types cover, then its internal type theory satisfies the internal axiom that $n$-types cover. \end{theorem} \begin{proof} By the [[Kripke-Joyal semantics]] of homotopy type theory, the conclusion requires that for any map $X\to \Gamma$ there is an effective epi $p:\Delta\to \Gamma$, an $n$-truncated map $Y\to \Delta$, and an effective epi $Y\to p^*X$ in the slice category over $\Delta$. Assuming the hypothesis, we can obtain this by letting $\Delta$ be an (external) $n$-type cover of $\Gamma$ and $Y$ an (external) $n$-type cover of $p^* X$. \end{proof} The converse, however, is not true. For the internal axiom, like all internal statements, is preserved by passage to slices (i.e. introduction of a nonempty context), but we saw above that the slice topos $\infty Gpd / \mathbf{B}^2 \mathbb{Z}$ does not have enough sets, even though $\infty Gpd$ does. For an example of a topos in whose internal logic sets do not cover, let $C$ be the $(2,1)$-category with two objects $a$ and $b$, one morphism $a\to b$, no morphisms $b\to a$, and $C(a,a) = \mathbf{B} \mathbb{Z}$ and $C(b,b)=1$, and consider the presheaf $(\infty,1)$-topos over $C$. A 1-truncated object therein consists of two groupoids $X_a$ and $X_b$, an element of the center of $X_a$, and a functor $X_b \to X_a$ which relates the chosen central element in $X_a$ with the identity in the center of $X_b$. If we take $X_b$ to be empty, then $X_a$ is a groupoid with an arbitrary chosen central element, and we can choose it to be one which is nontrivial and hence admits no surjection from a 0-type. Let $\Gamma = 1$ for this $X$. Since the terminal object $1$ is a representable (it is $C(-,b)$), it is projective; thus given $\Delta$ and $Y$ as above, we could find a section of $p:\Delta\to\Gamma$ and pull back $Y$ along it to obtain a 0-type cover of $X$ itself, which does not exist. \hypertarget{relation_to_other_axioms}{}\subsubsection*{{Relation to other axioms}}\label{relation_to_other_axioms} The internal axiom that sets cover is related to some forms of the [[axiom of choice]]. Let us denote by \begin{itemize}% \item $AC_0 =$ every surjection between sets merely has a section. \item $AC_\infty =$ every surjection with codomain a set merely has a section. \end{itemize} Then we have \begin{theorem} \label{}\hypertarget{}{} $AC_\infty \Leftrightarrow (AC_0$ and sets cover). \end{theorem} \begin{proof} This is a theorem inside homotopy type theory, and likewise for its proof. Clearly $AC_\infty \Rightarrow AC_0$. Given $X$, we have a map $X\to {\Vert X \Vert_0}$ which is 0-connected, hence also surjective, and its codomain is a set; thus by $AC_\infty$ it merely has a section. Any section of a 0-connected map is surjective; thus $X$ is merely covered by $\Vert X\Vert_0$. (Note that in this case we have a stronger version of ``sets cover'' in which the first $\sum$ is outside the truncation.) Conversely, suppose $AC_0$ and sets cover, and let $X\to Z$ be a surjection with codomain a set. Then there merely exists a set $Y$ and a surjection $Y\to X$, and the composite surjection $Y\to X\to Z$ merely has a section by $AC_0$. The composite of this section with $Y\to X$ is a section of $X\to Z$. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cover]] \item [[atlas]] \end{itemize} category: foundational axiom [[!redirects sets cover]] [[!redirects enough n-types]] [[!redirects enough sets]] \end{document}