\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{natural number} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{arithmetic}{}\paragraph*{{Arithmetic}}\label{arithmetic} [[!include arithmetic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{natural_numbers_objects}{Natural numbers objects}\dotfill \pageref*{natural_numbers_objects} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{minima_of_subsets_of_natural_numbers}{Minima of subsets of natural numbers}\dotfill \pageref*{minima_of_subsets_of_natural_numbers} \linebreak \noindent\hyperlink{decreasing_sequences_of_natural_numbers}{Decreasing sequences of natural numbers}\dotfill \pageref*{decreasing_sequences_of_natural_numbers} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{natural number} is traditionally one of the [[numbers]] $1$, $2$, $3$, and so on. It is now common in many fields of mathematics to include $0$ as a natural number as well. One advantage of doing so is that a natural number can then be identified with the [[cardinal number|cardinality]] of a [[finite set]], as well as a finite [[ordinal number]]. One can distinguish these as the \textbf{nonnegative integers} (with $0$) and the \textbf{positive integers} (without $0$), at least until somebody uses `positive' in the semidefinite sense. To a [[set theory|set theorist]], a natural number is essentially the same as an \textbf{[[integer]]}, so they often use the shorter word; one can also clarify with \textbf{unsigned integer} (but this doesn't help with $0$). The set of natural numbers is often written $N$, $\mathbf{N}$, $\mathbb{N}$, $\omega$, or $\aleph_0$. The last two notations refer to this set's structure as an [[ordinal number]] or [[cardinal number]] respectively, and they often (usually for $\aleph$) have a subscript $0$ allowing them to be generalised. In the [[foundations]] of mathematics, the [[axiom of infinity]] states that this actually forms a set (rather than a proper class). At a foundational level, it's completely irrelevant whether $0$ counts as a natural number or not; as [[sets]] (and even as [[natural numbers objects]]), the two options are equivalent, so we are really talking about the choice of [[rig]] structure (or [[inclusion map]] into the set of [[integers]], etc). By default, our natural numbers always include $0$. \hypertarget{natural_numbers_objects}{}\subsection*{{Natural numbers objects}}\label{natural_numbers_objects} $\mathbf{N}$ is a [[natural numbers object]] in [[Set]]; indeed, it is the original example. This consists of an initial element $0$ (or $1$ if $0$ is not used) and a successor operation $n \mapsto n + 1$ (or simply $n \mapsto n^+$; in [[computer science]], one often writes $n+$) such that, for a set $X$, an element $a: X$, and a [[function]] $s: X \to X$, there exists a unique function $f: \mathbf{N} \to X$ such that $f_0 = a$ and $f_{n+} = s(f_n)$. This function $f$ is said to be constructed by \textbf{primitive recursion}. (Fancier forms of [[recursion]] are also possible.) The basic idea is that we define the values of $f$ one by one, starting with $f_0 = a$, then $f_1 = s(a)$, $f_2 = s(s(a))$, and so on. These are all both possible and necessary individually, but something must be put in the [[foundations]] to ensure that this can go on uniquely forever. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{minima_of_subsets_of_natural_numbers}{}\subsubsection*{{Minima of subsets of natural numbers}}\label{minima_of_subsets_of_natural_numbers} In [[classical mathematics]], any [[inhabited set|inhabited]] subset of the natural numbers possesses a minimal element. In [[constructive mathematics]], one cannot show this: \begin{prop} \label{}\hypertarget{}{} \textbf{(a Brouwerian counterexample)} If any inhabited subset of the natural numbers possesses a minimal element, then the [[excluded middle|law of excluded middle]] holds. \end{prop} \begin{proof} Let $\varphi$ be an arbitrary arithmetical formula. Then the subset \begin{displaymath} U := \{ n \in \mathbb{N} \,|\, n = 1 \vee \varphi \} \subseteq \mathbb{N} \end{displaymath} is inhabited. By assumption, it possesses a minimal element $n_0$. By discreteness of the natural numbers, either $n_0 = 0$ or $n_0 \gt 0$. In the first case, $\varphi$ holds. In the second case, $\neg\varphi$ holds. \end{proof} In this sense, the natural numbers are not complete, and it's fruitful to study their completion: For instance, the global sections of the completed natural numbers object in the [[category of sheaves|sheaf topos]] on a topological space $X$ are in one-to-one correspondence with upper semicontinuous functions $X \to \mathbb{N}$ (details at \emph{[[one-sided real number]]}). We can salvage the minimum principle in two ways: \begin{prop} \label{}\hypertarget{}{} Any \textbf{[[decidable subset|detachable]]} inhabited subset of the natural numbers possesses a minimal element. \end{prop} \begin{prop} \label{}\hypertarget{}{} Any inhabited subset of the natural numbers does \textbf{not not} possess a minimal element. \end{prop} For instance, any finitely generated vector space over a [[field|residue field]] does \emph{not not} possess a finite basis (pick a minimal generating set, guaranteed to \emph{not not} exist). Interpreting this in the [[internal language]] of the sheaf topos of a [[reduced scheme]] $X$, one obtains the well-known fact that any $\mathcal{O}_X$-module locally of finite type over $X$ is locally free on a dense open subset. \hypertarget{decreasing_sequences_of_natural_numbers}{}\subsubsection*{{Decreasing sequences of natural numbers}}\label{decreasing_sequences_of_natural_numbers} Classically, any \emph{weakly} decreasing sequence of natural numbers $(a_n)_n$ is eventually constant, i.e. admits an index $N$ such that $a_N = a_{N+1} = a_{N+2} = \cdots$. Constructively, one can only prove for each $M$ that there exists an index $N$ such that $a_N = a_{N+1} = \cdots = a_{N+M}$. (One may prove this by induction on $a_0$; indeed, you can always find $N$ so that $N \leq a_0 M$.) The classical principle is equivalent to the [[limited principle of omniscience]] for $\mathbb{N}$ (which follows already when $a_0 = 1$). On the other hand, there can be no \emph{strictly} decreasing sequence of natural numbers. This is constuctively valid (proved by contradiction and induction on $a_0$). This is relevant to [[constructive algebra]], as this shows that formulating chain conditions needs some care. (It is easier to say `weakly' than `strictly' in the hypothesis, but then it's unclear how to state the conclusion.) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[number]], [[natural number]], [[integer]], [[rational number]], [[algebraic number]], [[Gaussian number]], [[irrational number]], [[real number]], [[p-adic number]] \item [[natural numbers type]], [[natural numbers object]] \item [[carrying]] \item [[numeral]] \item [[countable ordinal]] \end{itemize} [[!redirects natural number]] [[!redirects natural numbers]] [[!redirects nonnegative integer]] [[!redirects nonnegative integers]] [[!redirects positive integer]] [[!redirects positive integers]] [[!redirects unsigned integer]] [[!redirects unsigned integers]] \end{document}