\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{natural numbers in SEAR} \hypertarget{natural_numbers_in_sear}{}\section*{{Natural numbers in SEAR}}\label{natural_numbers_in_sear} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{zero_and_one}{Zero and one}\dotfill \pageref*{zero_and_one} \linebreak \noindent\hyperlink{two_and_above}{Two and above}\dotfill \pageref*{two_and_above} \linebreak \noindent\hyperlink{alternative_definition}{Alternative definition}\dotfill \pageref*{alternative_definition} \linebreak \noindent\hyperlink{replacing_the_power_set_axiom_by_something_else}{Replacing the power set axiom by something else}\dotfill \pageref*{replacing_the_power_set_axiom_by_something_else} \linebreak \noindent\hyperlink{with_the_axiom_of_infinity}{With the axiom of infinity}\dotfill \pageref*{with_the_axiom_of_infinity} \linebreak \noindent\hyperlink{discussion}{Discussion}\dotfill \pageref*{discussion} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} This page is a spin-off of the [[structural set theory]] described at [[SEAR]]. The aim is to define (individual) natural numbers in (a fragment of) SEAR without assuming the axiom of infinity. As a result, there should be a set with $n$ elements for all $n$, but we will not have a set of all natural numbers unless we assume the axiom of infinity. The aim is to use as few axioms/results as possible, in particular, not the result that the category of SEAR sets is a topos. What we define in the first instance is along the lines of natural numbers a la von Neumann. \hypertarget{zero_and_one}{}\subsection*{{Zero and one}}\label{zero_and_one} Barring opinions whether zero should be a natural number, in SEAR we have sets $\empty$ and $\mathbf{1}$ with zero and one element respectively. These follow from axioms 0, 1 and 2 at [[SEAR]]. \hypertarget{two_and_above}{}\subsection*{{Two and above}}\label{two_and_above} To define $\mathbf{2}$ we consider $P\mathbf{1}$. In a classical setting, this would be a two-element set, but not so for intuitionistic SEAR. We know that $\mathbf{1}$ has at least two subsets, namely $\empty$ and $\mathbf{1}$, so we let $\mathbf{2}$ be the subset of $P\mathbf{1}$ consisting of the corresponding elements. Continuing to higher numbers, we know that $\mathbf{n}$ has $n$ elements, so $n$ one-element subsets. Together with another 'obvious' subset, this gives a set with $n+1$ elements. More formally, let $\phi_2:\mathbf{1} \looparrowright P\mathbf{1}$ be the relation such that $\phi_2(*,empty)$ and $\phi_2(*,\mathbf{1})$. Then a tabulation $|\phi_2|$ has two elements. Let us fix one of these and call it $\mathbf{2}$. Now assume we have defined a set $\mathbf{n}$ with $n$ elements, $1,\ldots,n$, where $n \geq 2$. From axiom 3 we have a power set $P\mathbf{n}$. Let $\phi_{n+1}:\mathbf{1} \looparrowright P\mathbf{n}$ be a relation such that $\phi_{n+1}(*,u)$ whenever the subset $\{ i | \epsilon(i,u)\}$ of $\mathbf{n}$ has either exactly one element or is equal to all of $\mathbf{n}$. [[Mike Shulman]]: I think it's fine, though AN might object. A more formal thing to say would be that $\phi_{n+1}(*,u)$ whenever the subset $\{ i | \epsilon(i,u)\}$ of $\mathbf{n}$ has either exactly one element or is equal to all of $\mathbf{n}$. However, I don't think your definition works when $n=1$, since in that case, $\underline{1} = \mathbf{1}$! Perhaps instead of $\phi(*,\mathbf{n})$ you want $\phi(*,\emptyset)$? [[David Roberts]]: I've fixed the problem with $\mathbf{2}$, using Toby's original suggestion, incorporated the more formal suggestion you made for $\phi_{n+1}$ and added a new definition below. Then a tabulation of $\phi_{n+1}$ will have $n+1$ elements and we fix one of these as $\mathbf{n+1}$. The construction on $\mathbf{1},\mathbf{2},\ldots$ only requires a fragment of SEAR, namely axioms 0,1,2 and 3, and even holds in the analogous fragment of bounded SEAR. \hypertarget{alternative_definition}{}\subsubsection*{{Alternative definition}}\label{alternative_definition} To avoid having to treat $\mathbf{2}$ as a special case, we can use another definition, again starting from $\mathbf{0},\mathbf{1}$ as before. Assume we have defined $\mathbf{n}$ for $n \geq 1$. Then let $\psi_{n+1}:\mathbf{1} \looparrowright P\mathbf{n}$ be the relation such that $\psi_{n+1}(*,u)$ whenever the subset $\{ i | \epsilon(i,u)\}$ of $\mathbf{n}$ has either exactly one element or no elements. A tabulation $|\psi_{n+1}|$ has $n+1$ elements, and fixing one of these we denote it by $\mathbf{n+1}$. This definition holds in the same fragment of (bounded) SEAR as described above. [[David Roberts]]: Does this remark (about collection/power sets) belong here or in the next section? Certainly, I haven't gotten rid of power sets and I hope I haven't included collection. [[Mike Shulman]]: I think it belongs in the next section. \emph{Toby}: Sorry, I put my remarks in the wrong place! It was late \ldots{} \hypertarget{replacing_the_power_set_axiom_by_something_else}{}\subsection*{{Replacing the power set axiom by something else}}\label{replacing_the_power_set_axiom_by_something_else} As suggested by Toby, one could take as an axiom the existence of $\mathbf{2}$, together with axioms 0,1,2 and 5 (collection) of SEAR, instead of powersets (axiom 3). From Collection and $\mathbf{2}$, we get binary coproducts, so we could define $\mathbf{n}$ as $\mathbf{1}\coprod(\mathbf{1} \coprod ( \ldots\coprod \mathbf{1})\ldots)$ ($n$ times). (DR: this needs spelling out better, with tabulations, but that's the general idea). This definition also holds in the bounded fragment of SEAR. \hypertarget{with_the_axiom_of_infinity}{}\subsection*{{With the axiom of infinity}}\label{with_the_axiom_of_infinity} \begin{quote}% based on \href{http://golem.ph.utexas.edu/category/2009/09/towards_a_computeraided_system.html#c027061}{this blog post} and its predecessors \end{quote} To construe elements $n \in \mathbb{N}$ as giving actual finite sets, we construct a ``family'' $\phi\colon F \to \mathbb{N}$ where each fiber $F_n$ is a set of cardinality $n$. For example, consider the function \begin{displaymath} \phi\colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}\colon (m,n) \mapsto m + n + 1 \end{displaymath} Then, for each $n \geq 0$, the fiber $\phi^{-1}(n)$ is a set of cardinality $n$. If you use the Axiom of Collection, then it will do this for you automatically; you don't need to come up with an ad hoc representation of the family. \hypertarget{discussion}{}\subsection*{{Discussion}}\label{discussion} [[Mike Shulman]]: If you don't want to use powersets, then I'm pretty sure you'll need an axiom of coproducts. Unless I'm mistaken, the collection of [[subsingleton]] sets satisfies Axioms 0, 1, and 2. [[David Roberts]]: Actually what I probably mean is not use the result that $Set$ is a topos. I think you are correct on the subsingleton front, because it looks like we have no way of obtaining sets with more than one element without more axioms. \emph{Toby}: If you want to be cute, you can make the existence of $\mathbf{2}$ an axiom and then get arbitrary binary coproducts using Collection. On the other hand, if you're happy using power sets, then don't bother proving that $P\mathbf{1} = \mathbf{2}$ (which won't generalise to the intuitionistic case anyway); instead use Separation to carve out $\{ x \in P\mathbf{1} \;|\; x = \empty \;\vee\; x = \mathbf{1} \}$. Then $\mathbf{3}$ is a subset of $P\mathbf{2}$, etc; or make $\mathbf{3}$ and $\mathbf{4}$ both subsets of $P\mathbf{2}$, with the general rule going logarithmically. [[!redirects natural number in SEAR]] [[!redirects natural numbers in SEAR]] [[!redirects number in SEAR]] [[!redirects numbers in SEAR]] \end{document}