\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{near-horizon geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{NearHorizonGeometry}{Near-horizon geometry}\dotfill \pageref*{NearHorizonGeometry} \linebreak \noindent\hyperlink{FarHorizonGeometry}{Far-horizon geometry}\dotfill \pageref*{FarHorizonGeometry} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{BlackM2}{The black M2-brane}\dotfill \pageref*{BlackM2} \linebreak \noindent\hyperlink{BlackM5Brane}{The black M5-brane}\dotfill \pageref*{BlackM5Brane} \linebreak \noindent\hyperlink{MK6Brane}{The MK6-brane}\dotfill \pageref*{MK6Brane} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{for_extremal_black_holes}{For extremal black holes}\dotfill \pageref*{for_extremal_black_holes} \linebreak \noindent\hyperlink{for_black_branes}{For black branes}\dotfill \pageref*{for_black_branes} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[spacetime]] geometry of a [[black hole]] or [[black brane]] close to the [[horizon]] is called its \emph{near-horizon geometry}. Accordingly, the geometry far from the horizon might be called its \emph{far-horizon geometry}. One commonly says that the black hole/brane solution \emph{interpolates} between its near and far horizon geometry. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} In the following ``small'' and ``large'' [[radius]] is in [[units]] of [[Planck length]] $\ell_P$ times a root of the integer charge (``number'' $N$) of the branes, i.e. being ``near'' to the horizon means that \begin{displaymath} r/\ell_P N^{1/k} \ll 1 \end{displaymath} while ``far'' from the horizon means that \begin{displaymath} r/\ell_P N^{1/k} \gg 1 \end{displaymath} (e.g. \hyperlink{AFFHS98}{AFFHS 98, (2), (7) and below (11)}). This means that the near/far horizon limit may also be thought of as corresponding to large/small $N$, respectively. Since the [[Planck length]] ``is tiny'' and due to the higher roots of $N$ appearing here, this means that $N$ must be ``huge'' for the near horizon limit to be visible at macroscopic scale, while, conversely, any ``moderate'' value of $N$ means implies that every macroscopic radius is ``far'' from the horizon. \hypertarget{NearHorizonGeometry}{}\subsubsection*{{Near-horizon geometry}}\label{NearHorizonGeometry} For [[black brane|black]] [[M-branes]] ([[black branes]] in [[11-dimensional supergravity]]) of [[dimension]] $p+1$ that preserve some [[supersymmetry]], the near horizon geometry is always a [[Cartesian product]] of an [[anti-de Sitter spacetime]] $AdS_{p+2}$ with a [[compact topological space|compact]] [[Einstein manifold]] $X_{11-(p+2)}$; \begin{displaymath} Ads_{p+2} \times X_{d-(p+2)} \,; \end{displaymath} while for [[black brane|black]] [[D-branes]] and [[NS5-branes]] in [[type II supergravity]] the near horizon geometry is [[conformal transformation|conformal]] to a geometry of this form $AdS_{p+2} \times X_{d-(p+2)}$ (see \hyperlink{AFFHS98}{AFFHS 98, section 2}). \hypertarget{FarHorizonGeometry}{}\subsubsection*{{Far-horizon geometry}}\label{FarHorizonGeometry} In contrast, the ``far-horizon geometry'' of all those [[black branes]] whose near horizon geometry is $AdS_{p+2} \times X_{d-(p+2)}$ (i.e. actual [[anti-de Sitter spacetime]] without conformal factor) is of the form \begin{displaymath} \mathbb{R}^{p,1} \times C\left(X_{d-(p+2)}\right) \,, \end{displaymath} where $\mathbb{R}^{p,1}$ is [[Minkowski spacetime]] (the brane [[worldvolume]]) and $C(X_{d-(p+2)})$ is the [[metric cone]] over $X_{d-(p+2)}$, hence an [[orbifold]] (see \hyperlink{AFFHS98}{AFFHS 98, section 3}). Since this ``far-horizon limit'' is still a solution to the [[supergravity]] [[equations of motion]] away from the tip of the cone, it may in itself be regarded as a ``[[cone brane]]''-solution (see \hyperlink{AFFHS98}{AFFHS 98, section 3.1}). If $X_{d-(p+2)}$ is a smooth [[quotient space]] by the [[action]] of a [[finite subgroup of SU(2)]], then the corresponding [[cone brane]] is a brane ``at an [[ADE-singularity]]''. Examples and applications of such cone branes, in the context of [[M-theory on G2-manifolds]], are discussed in \hyperlink{AtiyahWitten01}{Atiyah-Witten 01}. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} The near/far horizon limits of the [[black brane|black]] [[M-branes]]: \begin{itemize}% \item \emph{\hyperlink{BlackM2}{The black M2-brane}} \item \emph{\hyperlink{BlackM5Brane}{The black M5-brane}} \item \emph{\hyperlink{MK6Brane}{The MK6-brane}} \end{itemize} \hypertarget{BlackM2}{}\subsubsection*{{The black M2-brane}}\label{BlackM2} The [[black brane|black]] [[M2-brane]] is given by the [[Riemannian metric]] \begin{equation} g_{M2} \;\coloneqq\; H^{- 2/3} g_{(\mathbb{R}^{2,1})} + H^{1/3} g_{C(X_7)} \label{BlackM2BraneMetric}\end{equation} and the [[C-field]] [[field strength|strength]] \begin{displaymath} F_{M2} \;\coloneqq\; dvol_{\mathbb{R}^{2,1}} \wedge d H^{-1} \end{displaymath} where $C(X_7)$ denotes the [[metric cone]] on a [[closed manifold|closed]] 7-[[dimension|dimensional]] [[Einstein manifold]] $X_7$ for [[cosmological constant]] $\Lambda = 5$, whence \begin{displaymath} g_{C(X)} \;\coloneqq\; (d r)^2 + r^2 g_{X_7} \,, \end{displaymath} and \begin{displaymath} H \;\coloneqq\; 1 + \frac{\ell_{th}^6}{r^6} \:, \phantom{AAA} \ell_{th} \;\coloneqq\; 2^{5/6} \pi^{2/6} N^{1/6} \ell_P \end{displaymath} with $N$ the number of [[M2-branes]] and with $\ell_P$ the [[Planck length]] in 11 dimensions. In the near-horizon/large $N$-limit $\ell_{th} \to \infty$ this becomes \begin{displaymath} \begin{aligned} g_{M2} \overset{\ell_{th} \gg 1}{\longrightarrow} \;\;\; & \left( r/\ell_{th} \right)^{4} g_{(\mathbb{R}^{2,1})} + \left( r/\ell_{th} \right)^{-2} g_{C(X_7)} \\ = & \left( r/\ell_{th} \right)^{4} g_{(\mathbb{R}^{2,1})} + \left( r/\ell_{th} \right)^{-2} (d r)^2 + \ell_{th}^{2} g_{X_7} \\ = & \underset{ = g_{AdS} }{\underbrace{ \frac{1}{z^2} \left( 2^4 g_{(\mathbb{R}^{2,1})} + (d z)^2 \right) }} + \ell_{th}^{2} g_{X_7} \end{aligned} \,, \end{displaymath} where in the last step we set \begin{displaymath} r \;\coloneqq\; 2 \ell_{th} \frac{1}{\sqrt{z}} \end{displaymath} This reveals the first summand as being the [[metric tensor]] of [[anti-de Sitter spacetime]] of AdS radius $\ell_{th}$ in [[horospheric coordinates]], and the second summand as that of $X_{7}$ rescaled to radius $\ell_{th}$. In contrast, in the far-horizon/small $N$-limit $\ell_{th} \to 0$ \eqref{BlackM2BraneMetric} becomes \begin{displaymath} g_{M2} \;\overset{\ell_{th} \to 0}{\longrightarrow}\; g_{\mathbb{R}^{2,1}} + g_{C(X_7)} \end{displaymath} and \begin{displaymath} F_{M2} \;\overset{\ell_{th} \to 0}{\longrightarrow}\; 0 \end{displaymath} which is the metric on a [[Cartesian product]] of flat [[Minkowski spacetime]] [[worldvolume]] of an M2-brane with the [[metric cone]] on $X_7$. \hypertarget{BlackM5Brane}{}\subsubsection*{{The black M5-brane}}\label{BlackM5Brane} The [[black brane|black]] [[M5-brane]] is given by the [[Riemannian metric]] \begin{equation} g_{M5} \;\coloneqq\; H^{- 1/3} g_{(\mathbb{R}^{5,1})} + H^{2/3} g_{C(X_4)} \label{BlackM5BraneMetric}\end{equation} and the [[C-field]] [[field strength|strength]] \begin{displaymath} F_{M2} \;\coloneqq\; \pm 3 \star_5 \wedge d H \end{displaymath} where $C(X_4)$ denotes the [[metric cone]] on a [[closed manifold|closed]] 4-[[dimension|dimensional]] [[Einstein manifold]] $X_4$ for [[cosmological constant]] $\Lambda = 3$, whence \begin{displaymath} g_{C(X)} \;\coloneqq\; (d r)^2 + r^2 g_{X_4} \,, \end{displaymath} and \begin{displaymath} H \;\coloneqq\; 1 + \frac{\ell_{th}^3}{r^3} \:, \phantom{AAA} \ell_{th} \;\coloneqq\; \pi^{1/3} N^{1/3} \ell_P \end{displaymath} with $N$ the number of [[M5-branes]] and with $\ell_P$ the [[Planck length]] in 11 dimensions. In the near-horizon/large $N$-limit $\ell_{th} \to \infty$ this becomes \begin{displaymath} \begin{aligned} g_{M5} \overset{\ell_{th} \gg 1}{\longrightarrow} \;\;\; & \left( r/\ell_{th} \right)^{4} g_{(\mathbb{R}^{2,1})} + \left( r/\ell_{th} \right)^{-2} g_{C(X_7)} \\ = & r/\ell_{th} g_{(\mathbb{R}^{2,1})} + \left( r/\ell_{th} \right)^{-2} (d r)^2 + \ell_{th}^{2} g_{X_7} \\ = & \underset{ = g_{AdS} }{\underbrace{ \frac{1}{z^2} \left( 2 g_{(\mathbb{R}^{2,1})} + (d z)^2 \right) }} + \ell_{th}^{2} g_{X_4} \end{aligned} \,, \end{displaymath} where in the last step we set \begin{displaymath} r \;\coloneqq\; \ell_{th}\tfrac{1}{2} \frac{1}{z^2} \end{displaymath} This reveals the first summand as being the [[metric tensor]] of [[anti-de Sitter spacetime]] of AdS radius $\ell_{th}$ in [[horospheric coordinates]], and the second summand as that of $X_{4}$ rescaled to radius $\ell_{th}$. In contrast, in the far-horizon/small $N$-limit $\ell_{th} \to 0$ \eqref{BlackM5BraneMetric} becomes \begin{displaymath} g_{M5} \;\overset{\ell_{th} \to 0}{\longrightarrow}\; g_{\mathbb{R}^{5,1}} + g_{C(X_4)} \end{displaymath} and \begin{displaymath} F_{M2} \;\overset{\ell_{th} \to 0}{\longrightarrow}\; 0 \end{displaymath} which is the metric on a [[Cartesian product]] of flat [[Minkowski spacetime]] [[worldvolume]] of an M5-brane with the [[metric cone]] on $X_4$. \hypertarget{MK6Brane}{}\subsubsection*{{The MK6-brane}}\label{MK6Brane} The [[metric tensor]] of $N$ coincident [[KK-monopoles]] in [[11-dimensional supergravity]] in the limit that $\ell_{th} \coloneqq N \ell_P \to 0$ is \begin{equation} g_{MK6} \;=\; g_{\mathbb{R}^{6,1}} + (d y)^2 + y^2 \big( (d \theta)^2 + (\sin \theta)^2 (d \varphi)^2 + (\cos \theta)^2 (d \phi)^2 \big) \label{SmallNMK6}\end{equation} subject to the identification \begin{equation} (\varphi, \phi) \;\sim\; (\varphi, \phi) + (2\pi/N ,2\pi/N) \,. \label{OrbifoldIdentificationForKKMonopole}\end{equation} This is equation (47) in \hyperlink{IMSY98}{IMSY 98}, which applies subject to the condition \begin{displaymath} U/\left(\frac{N}{g^{2/3}_{YM}}\right) \;=\; U/\left(\frac{N}{(2\pi)^{4/3} \ell_P}\right) \;\gg\; 1 \end{displaymath} from a few lines above. Inserting this condition into the definition $y^2 \coloneqq 2 N \ell^3_P U$ right above (47) shows that \begin{displaymath} \begin{aligned} y^2 & = 2 N \ell^3_P U \\ & = 2(2\pi)^{-4/3} N^2 \ell_P^2 \; \underset{ \gg 1 }{ \underbrace{ \left(U/\left(\frac{N}{ (2 \pi)^{4/3} \ell_P}\right)\right) }} \end{aligned} \end{displaymath} hence that the distance $y$ from the locus of the MK6-brane is large in units of \begin{displaymath} \ell_{th} \;=\; \sqrt{2} (2\pi)^{-2/3} N \ell_P \,. \end{displaymath} The identification \eqref{OrbifoldIdentificationForKKMonopole} means that this is the [[orbifold]] [[metric cone]] $\mathbb{R}^{6,1} \times \left( \mathbb{R}^4/(\mathbb{Z}_N)\right)$, hence an [[ADE classification| A-type]] [[ADE-singularity]]. To make this more explicit, introduce the complex coordinates \begin{displaymath} v \;\coloneqq\; y \, e^{i \varphi} \sin \theta \;\;\; w \;\coloneqq\; y \, e^{i \phi} \cos \theta \end{displaymath} on $\mathbb{R}^4 \simeq \mathbb{C}^2$, in terms of which \eqref{SmallNMK6} becomes \begin{displaymath} g_{MK6} \;\coloneqq\; d v d \overline v + d w d \overline w \end{displaymath} and which exhibit the identification \eqref{OrbifoldIdentificationForKKMonopole} as indeed that of the [[ADE classification|A-type]] $\mathbb{Z}_N$-action (\hyperlink{Asano00}{Asano 00, around (18)}). [[!include KK-monopole geometries -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[piecewise flat spacetime]] \item [[anti-de Sitter spacetime]] \item [[asymptotic boundary]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item Hari K. Kunduri, James Lucietti, \emph{Classification of Near-Horizon Geometries of Extremal Black Holes} (\href{http://relativity.livingreviews.org/Articles/lrr-2013-8/title.html}{web}) \end{itemize} \hypertarget{for_extremal_black_holes}{}\subsubsection*{{For extremal black holes}}\label{for_extremal_black_holes} That the near horizon geometry of the [[extremal black hole|extremal]] [[Reissner-Nordström black hole]] in $\mathcal{N}=2$ [[4d supergravity]] is $AdS_2 \times S^2$ was observed in \begin{itemize}% \item [[Gary Gibbons]], in F. del Aguila, [[J. de Azcarraga]], [[Luis Ibanez]] (eds.) \emph{Supersymmetry, Supergravity and Related Topics} \end{itemize} Description of the near-horizon geometry of near-extremal black holes by [[Jackiw-Teitelboim gravity]]: \begin{itemize}% \item Pranjal Nayak, Ashish Shukla, Ronak M Soni, [[Sandip Trivedi]], V. Vishal, \emph{On the Dynamics of Near-Extremal Black Holes} (\href{https://arxiv.org/abs/1802.09547}{arXiv:1802.09547}) \item Upamanyu Moitra, [[Sandip Trivedi]], V. Vishal, \emph{Near-Extremal Near-Horizons} (\href{https://arxiv.org/abs/1808.08239}{arXiv:1808.08239}) \end{itemize} \hypertarget{for_black_branes}{}\subsubsection*{{For black branes}}\label{for_black_branes} That the near horizon geometry of [[black branes]] in [[11-dimensional supergravity]] is (conformal to) [[anti de Sitter spacetime]] times some [[compact space]] is apparently due to \begin{itemize}% \item [[Gary Gibbons]], [[Paul Townsend]], \emph{Vacuum interpolation in supergravity via super p-branes}, Phys. Rev. Lett. 71, (1993) 3754 (\href{https://arxiv.org/abs/hep-th/9307049}{arXiv:hep-th/9307049}) \item [[Mike Duff]], [[Gary Gibbons]], [[Paul Townsend]], \emph{Macroscopic superstrings as interpolating solitons}, Phys. Lett. B. 332 (1994) 32 (\href{https://arxiv.org/abs/hep-th/9405124}{arXiv:hep-th/9405124}) \item [[Gary Gibbons]], [[Gary Horowitz]], [[Paul Townsend]], \emph{Higher-dimensional resolution of dilatonic black hole singularities}, Class. Quant. Grav. 12 (1995) 297 (\href{https://arxiv.org/abs/hep-th/9410073}{arXiv:hep-th/9410073}) \item [[Gary Gibbons]], Nucl. Phys. B207, (1982) 337; \item [[Renata Kallosh]], [[Amanda Peet]], Phys. Rev. B46, (1992) 5223; \item [[Sergio Ferrara]], [[Gary Gibbons]], [[Renata Kallosh]], Nucl. Phys. B500, (1997) 75; \item [[Ali Chamseddine]], [[Sergio Ferrara]], [[Gary Gibbons]], [[Renata Kallosh]], Phys. Rev. D55, (1997) 3647 \end{itemize} The observation that the resulting [[isometry group]] is the bosonic body of one of the [[orthosymplectic super groups]] is due to \begin{itemize}% \item P. Claus, [[Renata Kallosh]], J. Kumar, [[Paul Townsend]], [[Antoine Van Proeyen]], \emph{Conformal Theory of M2, D3, M5 and D1+D5 Branes}, JHEP 9806 (1998) 004 (\href{https://arxiv.org/abs/hep-th/9801206}{arXiv:hep-th/9801206}) \end{itemize} A decent account is in \begin{itemize}% \item [[Bobby Acharya]], [[Jose Figueroa-O'Farrill]], [[Chris Hull]], B. Spence, \emph{Branes at conical singularities and holography}, Adv. Theor.Math. Phys.2:1249-1286, 1999 (\href{https://arxiv.org/abs/hep-th/9808014}{arXiv:hep-th/9808014}) \end{itemize} reviewed in \begin{itemize}% \item [[Jose Figueroa-O'Farrill]], \emph{Near-horizon geometries of supersymmetric branes}, talk at \href{http://inspirehep.net/record/971430/}{SUSY 98} (\href{https://arxiv.org/abs/hep-th/9807149}{arXiv:hep-th/9807149}, \href{http://www.maths.ed.ac.uk/~jmf/CV/Seminars/SUSY98.pdf}{talk slides}) \end{itemize} The near horizon geometry of coincident [[KK-monopoles]] in [[11-dimensional supergravity]] is discussed in \begin{itemize}% \item Nissan Itzhaki, [[Juan Maldacena]], Jacob Sonnenschein, Shimon Yankielowicz, section 9 of \emph{Supergravity and The Large $N$ Limit of Theories With Sixteen Supercharges}, Phys. Rev. D 58, 046004 1998 (\href{https://arxiv.org/abs/hep-th/9802042}{arXiv:hep-th/9802042}) \item Nissan Itzhaki, [[Arkady Tseytlin]], S. Yankielowicz, \emph{Supergravity Solutions for Branes Localized Within Branes}, Phys.Lett.B432:298-304, 1998 (\href{https://arxiv.org/abs/hep-th/9803103}{arXiv:hep-th/9803103}) \item Akikazu Hashimoto, \emph{Supergravity Solutions for Localized Intersections of Branes}, JHEP 9901 (1999) 018 (\href{https://arxiv.org/abs/hep-th/9812159}{arXiv:hep-th/9812159}) \item Masako Asano, section 3 of \emph{Compactification and Identification of Branes in the Kaluza-Klein monopole backgrounds} (\href{https://arxiv.org/abs/hep-th/0003241}{arXiv:hep-th/0003241}) \end{itemize} Examples and applications of cone branes in the context of [[M-theory on G2-manifolds]] are discussed in \begin{itemize}% \item [[Michael Atiyah]], [[Edward Witten]] \emph{$M$-Theory dynamics on a manifold of $G_2$-holonomy}, Adv. Theor. Math. Phys. 6 (2001) (\href{http://arxiv.org/abs/hep-th/0107177}{arXiv:hep-th/0107177}) \end{itemize} Conical [[D-branes]] are discussed in \begin{itemize}% \item [[Koji Hashimoto]], Shunichiro Kinoshita, Keiju Murata, \emph{Conic D-branes}, Progress of Theoretical and Experimental Physics, Volume 2015, Issue 8, August 2015 (\href{https://arxiv.org/abs/1505.04506}{arXiv:1505.04506}, \href{http://www2.yukawa.kyoto-u.ac.jp/~qft.web/2015/slides/kinoshita.pdf}{slides pdf}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Near-horizon_metric}{Near-horizon metric}} \end{itemize} [[!redirects near-horizon geometries]] [[!redirects near horizon geometry]] [[!redirects near horizon geometries]] [[!redirects far-horizon geometry]] [[!redirects far-horizon geometries]] [[!redirects far horizon geometry]] [[!redirects far horizon geometries]] [[!redirects near-horizon limit]] [[!redirects near-horizon limits]] [[!redirects near horizon limit]] [[!redirects near horizon limits]] [[!redirects near-horizon metric]] [[!redirects near-horizon metrices]] [[!redirects far-horizon metric]] [[!redirects far-horizon metrices]] [[!redirects far-horizon limit]] [[!redirects far-horizon limits]] [[!redirects far horizon limit]] [[!redirects far horizon limits]] [[!redirects cone brane]] [[!redirects cone branes]] \end{document}