\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{nerve} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{NerveOfACategory}{Nerve of a 1-category}\dotfill \pageref*{NerveOfACategory} \linebreak \noindent\hyperlink{definition_3}{Definition}\dotfill \pageref*{definition_3} \linebreak \noindent\hyperlink{examples_2}{Examples}\dotfill \pageref*{examples_2} \linebreak \noindent\hyperlink{PropNerveCat}{Properties}\dotfill \pageref*{PropNerveCat} \linebreak \noindent\hyperlink{nerve_of_a_2category}{Nerve of a 2-category}\dotfill \pageref*{nerve_of_a_2category} \linebreak \noindent\hyperlink{nerve_of_an_category}{Nerve of an $\omega$-category}\dotfill \pageref*{nerve_of_an_category} \linebreak \noindent\hyperlink{nerve_of_chain_complexes}{Nerve of chain complexes}\dotfill \pageref*{nerve_of_chain_complexes} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{geometric_realization}{Geometric realization}\dotfill \pageref*{geometric_realization} \linebreak \noindent\hyperlink{nerves_and_higher_categories}{Nerves and higher categories}\dotfill \pageref*{nerves_and_higher_categories} \linebreak \noindent\hyperlink{internal_nerve}{Internal nerve}\dotfill \pageref*{internal_nerve} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{historical_note}{Historical note}\dotfill \pageref*{historical_note} \linebreak The \emph{nerve} is the right adjoint of a pair of [[adjoint functors]] that exists in many situations. For the general abstract theory behind this see \begin{itemize}% \item [[nerve and realization]]. \end{itemize} \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} As soon as any [[locally small category]] $C$ comes equipped with a [[simplicial object|cosimplicial object]] \begin{displaymath} \Delta_C : \Delta \to C \end{displaymath} that we may think of as determining a [[geometric realization|realization]] of the standard $n$-[[simplex]] in $C$, we make every [[object]] of $C$ [[space and quantity|probeable]] by [[simplex|simplices]] in that there is now a way to find the set \begin{displaymath} N(A)_n := Hom_C(\Delta_C[n],A) \end{displaymath} of ways to map the $n$-[[simplex]] into a given object $A$. These collections of sets evidently organize into a [[simplicial set]] \begin{displaymath} N(A) : \Delta^{op} \to Set \,. \end{displaymath} This [[simplicial set]] is called the \emph{nerve} of $A$ (with respect to the chosen [[geometric realization|realization]] of the standard simplices in $C$). Typically the nerve defines a functor $N \colon C \to Set^{\Delta^op}$ that has a left adjoint $|\cdot| \colon Set^{\Delta^op} \to C$ called [[realization]]. There are many generalizations of this procedure, some of which are described below. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{quote}% (notice that for the moment the following gives just one particular case of the more general notion of nerve) \end{quote} Let $S$ be one of the categories of [[geometric shapes for higher structures]], such as the [[globe category]] $G$, the [[simplex category]] $\Delta$, the [[cube category]] $\Box$, the [[cycle category]] $\Lambda$ of Connes, or certain category $\Omega$ related to trees whose corresponding presheaves are [[dendroidal set|dendroidal sets]]. If $C$ is any [[locally small category|locally small]] category or, more generally, a $V$-[[enriched category]] equipped with a [[functor]] \begin{displaymath} i : S \to C \end{displaymath} we obtain a functor \begin{displaymath} N : C \to V^{S^{op}} \end{displaymath} from $C$ to [[globular sets]] or [[simplicial sets]] or [[cubical sets]], respectively, (or the corresponding $V$-objects) given on an [[object]] $c \in C$ by \begin{displaymath} N_i(c) : S^{op} \stackrel{i}\to C^{op} \stackrel{C(-,c)}{\to} V \,. \end{displaymath} This $N_i(c)$ is the \textbf{nerve} of $c$ with respect to the chosen $i : S \to C$. In other words, $N = i^* \circ Y$ where $Y: C \to [C^{op}, V]$ is the curried Hom functor; if $V=\mathsf{Sets}$ then $Y$ is the [[Yoneda embedding]]. Typically, one wants that $i$ is [[dense functor]], i.e. that every object $c$ of $C$ is canonically a colimit of a diagram of objects in $M$, more precisely, \begin{displaymath} \mathrm{colim}((i/c)\stackrel{\mathrm{pr}_S}{\longrightarrow} S \stackrel{i}{\to} C) = c, \end{displaymath} which is equivalent to the requirement that the corresponding nerve functor is [[full and faithful functor|fully faithful]] (in other words, if $i$ is inclusion then $S$ is a left adequate subcategory of $C$ in terminology of [Isbell 1960]). The nerve functor may be viewed as a [[singular functor]] of the functor $i$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{NerveOfACategory}{}\subsubsection*{{Nerve of a 1-category}}\label{NerveOfACategory} For fixing notation, recall that the source and target maps of a small [[category\#OneCollectionOfMorphisms|category]] form a [[span]] in the category $Span(Set)$ where composition [[span\#categories\_of\_spans|is given by a pullback]] (fiber product). The pairs of composable morphisms of a category are then obtained composing its source/target span with itself. \begin{defn} \label{SmallCategory}\hypertarget{SmallCategory}{} A \emph{[[small category]]} $\mathcal{C}_\bullet$ is \begin{itemize}% \item a pair of [[sets]] $\mathcal{C}_0 \in Set$ (the set of [[objects]]) and $\mathcal{C}_1 \in Set$ (the set of [[morphisms]]) \item equipped with [[functions]] \begin{displaymath} \itexarray{ \mathcal{C}_1 \times_{\mathcal{C}_0} \mathcal{C}_1 &\stackrel{\circ}{\to}& \mathcal{C}_1 & \stackrel{\overset{t}{\to}}{\stackrel{\overset{i}{\leftarrow}}{\underset{s}{\to}}}& \mathcal{C}_0 }\,, \end{displaymath} where the [[fiber product]] on the left is that over $\mathcal{C}_1 \stackrel{t}{\to} \mathcal{C}_0 \stackrel{s}{\leftarrow} \mathcal{C}_1$, \end{itemize} such that \begin{itemize}% \item $i$ takes values in [[endomorphisms]]; \begin{displaymath} t \circ i = s \circ i = id_{\mathcal{G}_0}, \;\;\; \end{displaymath} \item $\circ$ defines a partial [[composition]] operation which is [[associativity|associative]] and [[unitality|unital]] for $i(\mathcal{C}_0)$ the [[identities]]; in particular $s (g \circ f) = s(f)$ and $t (g \circ f) = t(g)$. \end{itemize} \end{defn} \hypertarget{definition_3}{}\paragraph*{{Definition}}\label{definition_3} \begin{defn} \label{NerveOfSmallCategory}\hypertarget{NerveOfSmallCategory}{} For $\mathcal{C}_\bullet$ a [[small category]], def. \ref{SmallCategory}, its \emph{simplicial nerve} $N(\mathcal{C}_\bullet)_\bullet$ is the [[simplicial set]] with \begin{displaymath} N(\mathcal{C}_\bullet)_n \coloneqq \mathcal{C}_1^{\times_{\mathcal{C}_0}^n} \end{displaymath} the set of sequences of composable morphisms of length $n$, for $n \in \mathbb{N}$; with face maps \begin{displaymath} d_k \colon N(\mathcal{C}_\bullet)_{n+1} \to N(\mathcal{C}_\bullet)_{n} \end{displaymath} being \begin{itemize}% \item for $n = 0$, $d_0= target:arr(\mathcal{C})\to ob(\mathcal{C})$, whilst $d_1$ is similarly the domain / source function; \item for $n \geq 1$ \begin{itemize}% \item the two outer face maps $d_0$ and $d_n$ are given by forgetting the first and the last morphism in such a sequence, respectively; \item the $n-1$ inner face maps $d_{0 \lt k \lt n}$ are given by composing the $k$th morphism with the $k+1$st in the sequence. \end{itemize} \end{itemize} The degeneracy maps \begin{displaymath} s_k \colon N(\mathcal{C}_\bullet)n \to N(\mathcal{C}_\bullet)_{n+1} \,. \end{displaymath} are given by inserting an [[identity]] morphism on $x_k$. \end{defn} \begin{remark} \label{}\hypertarget{}{} Spelling this out in more detail: write \begin{displaymath} \mathcal{C}_n = \left\{ x_0 \stackrel{f_{0,1}}{\to} x_1 \stackrel{f_{1,2}}{\to} x_2 \stackrel{f_{2,3}}{\to} \cdots \stackrel{f_{n-1,n}}{\to} x_n \right\} \end{displaymath} for the set of sequences of $n$ composable morphisms. Given any element of this set and $0 \lt k \lt n$, write \begin{displaymath} f_{i-1,i+1} \coloneqq f_{i,i+1} \circ f_{i-1,i} \end{displaymath} for the composition of the two morphism that share the $i$th vertex. With this, face map $d_k$ acts simply by ``removing the index $k$'': \begin{displaymath} d_0 \colon (x_0 \stackrel{f_{0,1}}{\to} x_1 \stackrel{f_{1,2}}{\to} x_{2} \cdots \stackrel{f_{n-1,n}}{\to} x_n ) \mapsto (x_1 \stackrel{f_{1,2}}{\to} x_{2} \cdots \stackrel{f_{n-1,n}}{\to} x_n ) \end{displaymath} \begin{displaymath} d_{0\lt k \lt n} \colon ( x_0 \cdots \stackrel{}{\to} x_{k-1} \stackrel{f_{k-1,k}}{\to} x_k \stackrel{f_{k,k+1}}{\to} x_{k+1} \stackrel{}{\to} \cdots x_n ) \mapsto ( x_0 \cdots \stackrel{}{\to} x_{k-1} \stackrel{f_{k-1,k+1}}{\to} x_{k+1} \stackrel{}{\to} \cdots x_n ) \end{displaymath} \begin{displaymath} d_n \colon ( x_0 \stackrel{f_{0,1}}{\to} \cdots \stackrel{f_{n-2,n-1}}{\to} x_{n-1} \stackrel{f_{n-1,n}}{\to} x_n ) \mapsto ( x_0 \stackrel{f_{0,1}}{\to} \cdots \stackrel{f_{n-2,n-1}}{\to} x_{n-1} ) \,. \end{displaymath} Similarly, writing \begin{displaymath} f_{k,k} \coloneqq id_{x_k} \end{displaymath} for the identity morphism on the object $x_k$, then the degeneracy map acts by ``repeating the $k$th index'' \begin{displaymath} s_k \colon ( x_0 \stackrel{}{\to} \cdots \to x_k \stackrel{f_{k,k+1}}{\to} x_{k+1} \to \cdots ) \mapsto ( x_0 \stackrel{}{\to} \cdots \to x_k \stackrel{f_{k,k}}{\to} x_k \stackrel{f_{k,k+1}}{\to} x_{k+1} \to \cdots ) \,. \end{displaymath} This makes it manifest that these functions organise into a [[simplicial set]]. \end{remark} More abstractly, this construction is described as follows. Recall that \begin{defn} \label{}\hypertarget{}{} The [[nLab:simplex category|simplex category]] $\Delta$ is equivalent to the [[full subcategory]] \begin{displaymath} i \colon \Delta \hookrightarrow Cat \end{displaymath} of [[Cat]] on non-empty finite [[linear orders]] regarded as categories, meaning that the object $[n] \in Obj(\Delta)$ may be identified with the category $[n] = \{0 \to 1 \to 2 \to \cdots \to n\}$. The morphisms of $\Delta$ are all functors between these total linear categories. \end{defn} \begin{defn} \label{}\hypertarget{}{} For $\mathcal{C}$ a [[small category]] its \emph{nerve} $N(\mathcal{C})$ is the [[simplicial set]] given by \begin{displaymath} N(\mathcal{C}) \colon \Delta^{op} \hookrightarrow Cat^{op} \stackrel{Cat(-,\mathcal{C})}{\to} Set \,, \end{displaymath} where [[Cat]] is regarded as a [[1-category]] with objects locally small categories, and morphisms being [[functors]] between these. \end{defn} So the set $N(\mathcal{C})_n$ of $n$-[[simplices]] of the nerve is the set of functors $\{0 \to 1 \to \cdots \to n\} \to \mathcal{C}$. This is clearly the same as the set of sequences of composable morphisms in $\mathcal{C}$ of length $n$ obtained by iterated fiber product (as \hyperlink{NerveOfACategory}{above} for pairs of composables): \begin{displaymath} N(\mathcal{C})_n = \underbrace{ Mor(\mathcal{C}) \times_{Obj(\mathcal{C})} Mor(\mathcal{C}) \times_{Obj(\mathcal{C})} \cdots \times_{Obj(\mathcal{C})} Mor(\mathcal{C}) }_{n \medspace factors} \end{displaymath} The collection of all functors between linear orders \begin{displaymath} \{ 0 \to 1 \to \cdots \to n \} \to \{ 0 \to 1 \to \cdots \to m \} \end{displaymath} is generated from those that map almost all generating morphisms $k \to k+1$ to another generating morphism, except at one position, where they \begin{itemize}% \item map a single generating morphism to the composite of two generating morphisms \begin{displaymath} \delta^n_i : [n-1] \to [n] \end{displaymath} \begin{displaymath} \delta^n_i : ((i-1) \to i) \mapsto ((i-1) \to i \to (i+1)) \end{displaymath} \item map one generating morphism to an identity morphism \begin{displaymath} \sigma^n_i : [n+1] \to [n] \end{displaymath} \begin{displaymath} \sigma^n_i : (i \to i+1) \mapsto Id_i \end{displaymath} \end{itemize} It follows that, for instance \begin{itemize}% \item for $(d_0 \stackrel{f_1}{\to} d_1, d_1 \stackrel{f_2}{\to} d_2, d_2 \stackrel{f_3}{\to} d_3) \in N(D)_3$ the image under $d_1 := N(\mathcal{C})(\delta_1) : N(\mathcal{C})_3 \to N(\mathcal{C})_2$ is obtained by composing the first two morphisms in this sequence: $(d_0 \stackrel{f_2 \circ f_1}{\to} d_2, d_2 \stackrel{f_3}{\to} d_3) \in N(\mathcal{C})_2$ \item for $(d_0 \stackrel{f_1}{\to} d_1) \in N(\mathcal{C})_1$ the image under $s_1 := N(\mathcal{C})(\sigma_1) : N(\mathcal{C})_1 \to N(\mathcal{C})_2$ is obtained by inserting an identity morphism: $(d_0 \stackrel{f_1}{\to} d_1, d_1 \stackrel{Id_{d_1}}{\to} d_1) \in N(\mathcal{C})_2$. \end{itemize} In this way, generally the face and degeneracy maps of the nerve of a category come from composition of morphisms and from inserting identity morphisms. In particular in light of their generalization to nerves of higher categories, discussed below, the cells in the nerve $N(\mathcal{C})$ have the following interpretation: \begin{itemize}% \item $N(\mathcal{C})_0 = \{d | d \in Obj(\mathcal{C})\}$ is the collection of [[objects]] of $\mathcal{C}$; \item $N(\mathcal{C})_1 = Mor(\mathcal{C}) = \{d \stackrel{f}{\to} d' | f \in Mor(D)\}$ is the collection of [[morphisms]] of $D$; \item $N(\mathcal{C})_2 = \left\{ \left. \itexarray{ && d_1 \\ & {}^{f_1}\nearrow &\Downarrow^{\exists !}& \searrow^{f_2} \\ d_0 &&\stackrel{f_2 \circ f_1}{\to}&& d_2 } \right| (f_1, f_2) \in Mor(D) {}_t \times_s Mor(D) \right\}$ is the collection of composable morphisms in $\mathcal{C}$: the 2-cell itself is to be read as the \emph{composition operation}, which is unique for an ordinary category (there is just one way to compose two morphisms); \item $N(\mathcal{C})_3 = \left\{ \left. \itexarray{ d_1 &\stackrel{f_2}{\to}& d_2 \\ {}^{f_1}\uparrow & {}^{f_2 \circ f_1}\nearrow & \downarrow^{f_3} \\ d_0 &\stackrel{f_3\circ (f_2\circ f_1)}{\to}& d_3 } \;\;\;\;\;\stackrel{\exists !}{\Rightarrow} \;\;\;\;\; \itexarray{ d_1 &\stackrel{f_2}{\to}& d_2 \\ {}^{f_1}\uparrow & \searrow^{f_3\circ f_2} & \downarrow^{f_3} \\ d_0 &\stackrel{(f_3\circ f_2) \circ f_1}{\to}& d_3 } \right| (f_3,f_2, f_1) \in Mor(D) {}_t \times_s Mor(D) {}_t \times_s Mor(D) \right\}$ is the collection of triples of composable morphisms, to be read as the unique associators that relate one way to compose three morphisms using the above 2-cells to the other way. \end{itemize} \hypertarget{examples_2}{}\paragraph*{{Examples}}\label{examples_2} \begin{example} \label{}\hypertarget{}{} \textbf{(bar construction)} Let $A$ be a [[monoid]] (for instance a [[group]]) and write $\mathbf{B} A$ for the corresponding one-object [[category]] with $Mor(\mathbf{B} A) = A$. Then the nerve $N(\mathbf{B} A)$ of $\mathbf{B}A$ is the simplicial set which is the usual [[bar construction]] of $A$ \begin{displaymath} N(\mathbf{B}A) = \left( \cdots A \times A \times A \stackrel{\to}{\stackrel{\to}{\to}} A \times A \stackrel{\to}{\to} A \to {*} \right) \end{displaymath} In particular, when $A = G$ is a discrete group, then the [[geometric realization]] $|N(\mathbf{B} G)|$ of the nerve of $\mathbf{B}G$ is the [[classifying space|classifying]] [[topological space]] $\cdots \simeq B G$ for $G$-[[principal bundles]]. \end{example} \hypertarget{PropNerveCat}{}\paragraph*{{Properties}}\label{PropNerveCat} The following lists some characteristic properties of simplicial sets that are nerves of categories. \begin{prop} \label{}\hypertarget{}{} A simplicial set is the nerve of a category precisely if it satisfies the [[Segal condition]]. \end{prop} See at \emph{[[Segal condition]]} for more on this. \begin{prop} \label{}\hypertarget{}{} A [[simplicial set]] is the nerve of a [[small category]] precisely if all \emph{inner} [[horns]] have \emph{unique} fillers. \end{prop} See [[inner fibration]] for details on this. \begin{prop} \label{}\hypertarget{}{} A [[simplicial set]] is the nerve of a [[groupoid]] precisely if \emph{all} [[horns]] of dimension $\gt 1$ have \emph{unique} fillers. \end{prop} \begin{prop} \label{}\hypertarget{}{} The nerve $N(C)$ of a category is [[coskeleton|2-coskeletal]]. \end{prop} Hence all [[horn]] inclusions $\Lambda[n]_i \hookrightarrow \Delta[n]$ have unique fillers for $n \gt 3$, and all boundary inclusions $\partial \Delta[n] \hookrightarrow \Delta[n]$ have unique fillers for $n \geq 3$. Here the point as compared to the previous statements is that in particular all the outer horns have fillers for $n \gt 3$. \begin{prop} \label{}\hypertarget{}{} The nerve $N(C)$ of a [[small category]] is a [[Kan complex]] precisely if $C$ is a [[groupoid]]. \end{prop} The existence of [[inverse]] morphisms in $C$ corresponds to the fact that in the [[Kan complex]] $N(C)$ the ``outer'' [[horns]] \begin{displaymath} \itexarray{ && d_0 \\ & && \searrow^{f} \\ d_1 &&\stackrel{Id_{d_1}}{\to} && d_1 } \;\;\; \;\;\; and \;\;\; \;\;\; \itexarray{ && d_1 \\ & {}^f\nearrow && \\ d_0 &&\stackrel{Id_{d_0}}{\to} && d_1 } \end{displaymath} have fillers \begin{displaymath} \itexarray{ && d_0 \\ & {}^{f^{-1}}\nearrow&& \searrow^{f} \\ d_1 &&\stackrel{Id_{d_1}}{\to} && d_1 } \;\;\; \;\;\; and \;\;\; \;\;\; \itexarray{ && d_1 \\ & {}^f\nearrow && \searrow^{f^{-1}} \\ d_0 &&\stackrel{Id_{d_0}}{\to} && d_0 } \end{displaymath} (even unique fillers, due to the above). It suggests the sense that a Kan complex models an [[∞-groupoid]]. The possible lack of uniqueness of fillers in general gives the `weakness' needed, whilst the lack of a [[coskeletal]] property requirement means that the homotopy type it represents has enough generality, not being constrained to be a 1-type. \begin{prop} \label{}\hypertarget{}{} The nerve functor \begin{displaymath} N : Cat \to SSet \end{displaymath} is a [[full and faithful functor]]. \end{prop} So [[functors]] between [[locally small category|locally small categories]] are in [[bijection]] with morphisms of [[simplicial sets]] between their nerves. \begin{prop} \label{}\hypertarget{}{} A [[simplicial set]] $S$ is the nerve of a locally small category $C$ precisely if it satisfies the [[Segal conditions]]: precisely if all the commuting squares \begin{displaymath} \itexarray{ S_{n+m} &\stackrel{\cdots \circ d_0 \circ d_0}{\to}& S_m \\ {}^{\cdots d_{n+m-1}\circ d_{n+m}}\downarrow && \downarrow \\ S_n &\stackrel{d_0 \circ \cdots d_0}{\to}& S_0 } \end{displaymath} are [[pullback]] diagrams. \end{prop} Unwrapping this definition inductively in $(n+m)$, this says that a simplicial set is the nerve of a category if and only if all its cells in degree $\geq 2$ are unique compositors, associators, pentagonators, etc of composition of 1-morphisms. No non-trivial such structure cells appear and no further higher cells appear. This characterization of categories in terms of nerves directly leads to the model of [[(∞,1)-category]] in terms of [[complete Segal spaces]] by replacing in the above discussion sets by [[topological spaces]] (or something similar, like [[Kan complexes]]) and pullbacks by [[homotopy pullback|homotopy pullbacks]]. \hypertarget{nerve_of_a_2category}{}\subsubsection*{{Nerve of a 2-category}}\label{nerve_of_a_2category} For [[2-categories]] modeled as [[bicategories]] the nerve operation is called the [[Duskin nerve]]. \begin{prop} \label{}\hypertarget{}{} A simplicial set is the [[Duskin nerve]] of a [[bigroupoid]] precisely if it is a 2-[[hypergroupoid]]: a [[Kan complex]] such that the horn fillers in dimension $\geq 3$ are \emph{unique} . \end{prop} This is theorem 8.6 in (\href{http://www.tac.mta.ca/tac/volumes/9/n10/9-10abs.html}{Duskin}) For a [[2-category]], regarded as a [[Cat]]-[[internal category]] one can apply the nerve operation for categories in stages, to obtain the [[double nerve]]. \hypertarget{nerve_of_an_category}{}\subsubsection*{{Nerve of an $\omega$-category}}\label{nerve_of_an_category} \begin{itemize}% \item For [[strict omega-category|strict omega-categories]] there is a nerve induced by the [[orientals]]; see [[omega-nerve]]. \end{itemize} \hypertarget{nerve_of_chain_complexes}{}\subsubsection*{{Nerve of chain complexes}}\label{nerve_of_chain_complexes} Let $Ch_+$ be the [[category of chain complexes]] of abelian groups, then there is a [[simplicial object|cosimplicial chain complex]] \begin{displaymath} C_\bullet : \Delta \to Ch_+ \end{displaymath} given by sending the standard $n$-simplex $\Delta[n]$ first to the free [[simplicial group]] $F(\Delta[n])$ over it and then that to the normalized [[Moore complex]]. This is a small version of the ordinary [[homology]] [[chain complex]] of the standard $n$-[[simplex]]. The nerve induced by this cosimplicial object was first considered in \begin{itemize}% \item D. Kan, \emph{Functors involving c.s.s complexes}, Transactions of the American Mathematical Society, Vol. 87, No. 2 (Mar., 1958), pp. 330--346 (\href{http://www.jstor.org/stable/1993103}{jstor}) \end{itemize} The nerve/[[geometric realization|realization]] adjunction induced from this is the [[Dold?Kan correspondence]]. See there for more details. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \hypertarget{geometric_realization}{}\subsubsection*{{Geometric realization}}\label{geometric_realization} Often the operation of taking the nerve of a (higher) category is followed by forming the [[geometric realization]] of the corresponding cellular set. \hypertarget{nerves_and_higher_categories}{}\subsubsection*{{Nerves and higher categories}}\label{nerves_and_higher_categories} For many purposes it is convenient to conceive categories and especially [[∞-categories]] entirely in terms of their nerves: those simplicial sets that arise as certain nerves are usually characterized by certain properties. So one can turn this around and \emph{define} an [[∞-category]] as a simplicial set with certain properties. This is the strategy of a [[geometric definition of higher category]]. Examples for this are [[complicial set|complicial sets]], [[Kan complex|Kan complexes]], [[quasi-category|quasi-categories]], [[simplicial T-complex|simplicial T-complexes]],\ldots{} \hypertarget{internal_nerve}{}\subsubsection*{{Internal nerve}}\label{internal_nerve} A variant of the nerve construction can also be applied \emph{internally} within a category, to any internal category, see the discussion at [[internal category]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[monad with arities]] \item [[Duskin nerve]] \item [[∞-nerve]] \item [[homotopy coherent nerve]] \item [[dg-nerve]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[W. G. Dwyer]], [[D. M. Kan]], Singular functors and realization functors, Nederl. Akad. Wetensch. Indag. Math. 46 (1984), no. 2, 147--153. \href{http://www.nd.edu/~wgd/Dvi/SingularAndRealization.pdf}{pdf} \item [[John Isbell]], Adequate subcategories, Illinois J. Math. 4, 541--552 (1960) \item [[Tom Leinster]], \emph{Higher operads, higher categories} , London Mathematical Society Lecture Note Series, 298. Cambridge Univ. Press 2004. xiv+433 pp. ISBN: 0-521-53215-9, \href{http://front.math.ucdavis.edu/0305.5049}{arXiv:math.CT/0305049} \item [[Ross Street]], The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987), no. 3, 283--335. \item [[Paul Bressler]], Alexander Gorokhovsky, [[Ryszard Nest]], [[Boris Tsygan]], \emph{Formality for algebroids I: Nerves of two-groupoids}, \href{http://arxiv.org/abs/1211.6603}{arxiv/1211.6603} \end{itemize} For an explanation of how the category $\Delta$ and the nerve construction arise canonically from the free category monad on the category of [[quivers]], see: \begin{itemize}% \item [[Tom Leinster]], \href{https://golem.ph.utexas.edu/category/2008/01/mark_weber_on_nerves_of_catego.html}{How I learned to love the nerve construction}, $n$-Category Caf\'e{}, January 6, 2008. \end{itemize} \hypertarget{historical_note}{}\subsubsection*{{Historical note}}\label{historical_note} The notion of the nerve of a category seems to be due to Grothendieck, which is in turn based on the nerve of a covering from 1926 work of [[Pavel Sergeevič Aleksandrov]]. One of the first papers to consider the properties of the nerve and to apply it to problems in algebraic topology was \begin{itemize}% \item [[Graeme Segal]], \emph{Classifying spaces and spectral sequences,} Inst. Hautes \'E{}tudes Sci. Publ. Math. No. 34 (1968) 105-112. \end{itemize} Many of the later developments can already be seen there in `embryonic' form. [[!redirects nerves]] [[!redirects nerve functor]] [[!redirects nerve functors]] [[!redirects simplicial nerve]] [[!redirects simplicial nerves]] [[!redirects simplicial nerve functor]] [[!redirects simplicial nerve functors]] [[!redirects nerve of a category]] [[!redirects nerves of a categories]] \end{document}