\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{nerve and realization} [[!redirects realization and nerve]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{TopologicalRealizationOfSimplicialSets}{Topological realization of simplicial sets}\dotfill \pageref*{TopologicalRealizationOfSimplicialSets} \linebreak \noindent\hyperlink{NervesOfCategories}{Nerve and realization of categories}\dotfill \pageref*{NervesOfCategories} \linebreak \noindent\hyperlink{doldkan_correspondence}{Dold--Kan correspondence}\dotfill \pageref*{doldkan_correspondence} \linebreak \noindent\hyperlink{higher_lie_integration__smooth_sullivan_construction}{Higher Lie integration / smooth Sullivan construction}\dotfill \pageref*{higher_lie_integration__smooth_sullivan_construction} \linebreak \noindent\hyperlink{simplicial_models_for_categories}{Simplicial models for $(\infty,1)$-categories}\dotfill \pageref*{simplicial_models_for_categories} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{full_and_faithfulness}{Full and faithfulness}\dotfill \pageref*{full_and_faithfulness} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Under rather general conditions a [[functor]] \begin{displaymath} S_C : S \to C \end{displaymath} into a [[cocomplete category]] $C$ (possibly a $V$-[[enriched category]] with $V$ some [[complete category|complete]] [[symmetric monoidal category]]) induces a pair of [[adjoint functors]] \begin{displaymath} C \stackrel{\xleftarrow{|-|}}{\underset{N}{\rightarrow}} [S^{op}, V], \end{displaymath} where $|-| \dashv N$, between $C$ and the [[category of presheaves]] $PSh(S) = [S^{op}, V]$ on $S$ (here $V$ = [[Set]] for the unenriched case) where \begin{itemize}% \item $N$ behaves like a [[nerve]] operation; \item $|-|$ behaves like [[geometric realization]]. \end{itemize} \begin{remark} \label{}\hypertarget{}{} Here ``$S$'' is supposed to be suggestive of a category of certain ``[[geometric shapes for higher structures|geometric Shapes]]''. The canonical example is $S = \Delta$, the [[simplex category]], and the reader may find it helpful to keep that example in mind. \end{remark} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We place ourselves in the context of $V$-[[enriched category theory]]. The reader wishing to stick to the ordinary notions in [[locally small category|locally small categories]] takes $V$= [[Set]]. The \emph{realization} operation is the left [[Kan extension]] of $S_C : S \to C$ along the [[Yoneda embedding]] $S \hookrightarrow [S^{op},V]$ (i.e. the [[Yoneda extension]]): \begin{displaymath} \itexarray{ S &\stackrel{S_C}{\to}&& C \\ \downarrow^{Y} &\Downarrow& \nearrow_{|-|} \\ [S^{op},V] } \,. \end{displaymath} If we assume that $C$ is [[copower|tensored]] over $V$, then by the general [[coend]] formula for left [[Kan extension]] we find that for $X \in [S^{op}, V]$ we have \begin{displaymath} |X| \simeq \int^{s \in S} S_C(s) \cdot X_s \,. \end{displaymath} For instance when $S = \Delta$ is the [[simplex category]] this reads more recognizably \begin{displaymath} |X| \simeq \int^{[n] \in \Delta} \Delta_C[n] \cdot X_n \,. \end{displaymath} The corresponding [[nerve]] operation \begin{displaymath} N : C \stackrel{}{\to} [S^{op},V] \end{displaymath} is given by \begin{displaymath} N(c) : S^{op} \stackrel{S_C^{op}}{\to} C^{op} \stackrel{C(-,c)}{\to} V \,. \end{displaymath} \begin{theorem} \label{}\hypertarget{}{} Nerve and realization are a pair of [[adjoint functors]] \begin{displaymath} (|-| \dashv N) \end{displaymath} with $N$ [[right adjoint]]. \end{theorem} \begin{proof} Using the fact that the Hom in its first argument sends [[coends]] to [[ends]] and then using the definition of [[copower|tensoring]] over $V$, we check the hom-isomorphism \begin{displaymath} \begin{aligned} Hom_C(|X|, c) &:= Hom_C( \int^{s} S_C(s) \cdot X_s, c) \\ & \simeq \int_{s} Hom_C( S_C(s) \cdot X_s, c) \\ & \simeq \int_{s} Hom_V( X_s , C(S_C(s), c)) \\ & = \int_{s} Hom_V( X_s , N(c)_s) \\ & \simeq Hom_{[S^{op},V]}(X, N(c)) \,, \end{aligned} \end{displaymath} where in the last step we used the definition of the [[enriched functor category]] in terms of an [[end]]. \end{proof} \begin{remark} \label{}\hypertarget{}{} In many cases we have $V =$ [[Set]] and the [[copower|tensoring]] of an object $c$ over a set $I$ is given by coproducts as \begin{displaymath} c \cdot I = \coprod_{i \in I} c \,. \end{displaymath} This is the case for instance for the below examples of realization of [[simplicial sets]], nerves of categories and the [[Dold-Kan correspondence]]. \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{TopologicalRealizationOfSimplicialSets}{}\subsubsection*{{Topological realization of simplicial sets}}\label{TopologicalRealizationOfSimplicialSets} A classical example is given by the [[simplicial topological space|cosimplicial topological space]] \begin{displaymath} \Delta_{Top} : \Delta \to Top \end{displaymath} that sends the abstract $n$-[[simplex]] $[n]$ to the standard topological $n$-simplex $\Delta_{Top}[n] \subset \mathbb{R}^n$. \begin{itemize}% \item The corresponding realization is what is traditionally called \emph{[[geometric realization]]} of simplicial sets. By restricting this to simplicial sets which are themselves simplicial nerves of [[categories]] (see \href{NervesOfCategories}{below}) or more generally are [[quasi-categories]], this also induces the notion of geometric realization of categorical structures. The construction generalizes also to a notion of \emph{[[geometric realization of simplicial topological spaces]]}. \item The corresponding [[nerve]] is the [[singular simplicial complex]] functor, producing the [[fundamental ∞-groupoid]] of a topological space. \end{itemize} This topological nerve and realization adjunction plays a central role as a presentation of the [[Quillen equivalence]] between the [[model structure on simplicial sets]] and the [[model structure on topological spaces]]. This is discussed in detail at \emph{[[homotopy hypothesis]]}. \hypertarget{NervesOfCategories}{}\subsubsection*{{Nerve and realization of categories}}\label{NervesOfCategories} Pretty much every notion of [[category]] and [[higher category theory|higher category]] comes, or should come, with its canonical notion of simplicial nerve, induced from a functor \begin{displaymath} \Delta_C : \Delta \to n Cat \end{displaymath} that sends the standard $n$-[[simplex]] to something like the free $n$-category on the $n$-[[directed n-graph|directed graph]] underlying that simplex. For ordinary categories see the discussion at \emph{[[nerve]]} and at \emph{[[geometric realization of categories]]}. One formalization of this for $n = \infty$ in the context of [[strict ∞-categories]] is the cosimplicial $\omega$-category called the [[orientals]] \begin{displaymath} \Delta_{\omega} : \Delta \to \omega Cat \,. \end{displaymath} \begin{itemize}% \item The induced [[nerve]] is the [[∞-nerve]]. \item The induced realization operation is the operation of forming the free $\omega$-category on a simplicial set. See [[oriental]] for more details. \end{itemize} \hypertarget{doldkan_correspondence}{}\subsubsection*{{Dold--Kan correspondence}}\label{doldkan_correspondence} The [[Dold-Kan correspondence]] is the nerve/realization adjunction for the [[homology]] functor \begin{displaymath} \Delta_{C_\bullet} : \Delta \to Ch_+ \end{displaymath} to the [[category of chain complexes]] of abelian groups, which sends the standard $n$-[[simplex]] to its [[homology]] chain complex, more precisely to its normalized [[Moore complex]]. \begin{itemize}% \item The induced realization is the normalized [[Moore complex]] functor extended from $\Delta$ to all [[simplicial sets]]. \end{itemize} \hypertarget{higher_lie_integration__smooth_sullivan_construction}{}\subsubsection*{{Higher Lie integration / smooth Sullivan construction}}\label{higher_lie_integration__smooth_sullivan_construction} see at \emph{[[Lie integration]]} \href{Lie+integration#LieIntegrationIsRightQuillenFunctor}{this Prop.} \hypertarget{simplicial_models_for_categories}{}\subsubsection*{{Simplicial models for $(\infty,1)$-categories}}\label{simplicial_models_for_categories} The canonical cosimplicial [[simplicially enriched category]] \begin{displaymath} \Delta \to SSet\text{-}Cat \end{displaymath} induces the [[homotopy coherent nerve]] of [[SSet]]-[[enriched category|enriched categories]] and establishes the relation between the [[quasi-category]] and the simplicially enriched model for [[(infinity,1)-category|(infinity,1)-categories]]. See \begin{itemize}% \item [[relation between quasi-categories and simplicial categories]]. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{full_and_faithfulness}{}\subsubsection*{{Full and faithfulness}}\label{full_and_faithfulness} Under some conditions one can characterize when and where the nerve construction is a [[full and faithful functor]]. For the moment see for instance \emph{[[monad with arities]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[nerve]], [[monad with arities]] \item [[geometric realization]] \item [[totalization]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of nerve and realization (not with these names yet) was introduced and proven to be an [[adjunction]] in section 3 of \begin{itemize}% \item [[Daniel Kan]], \emph{Functors involving c.s.s complexes}, Transactions of the American Mathematical Society, Vol. 87, No. 2 (Mar., 1958), pp. 330--346 (\href{http://www.jstor.org/stable/1993103}{jstor}). \end{itemize} In fact, in that very article apparently what is now called [[Kan extension]] is first discussed. Also, in that article, as an example of the general mechanism, also the [[Dold?Kan correspondence]] was found and discussed, independently of the work by Dold and Puppe shortly before, who used a much less general-nonsense approach. In an article in 1984, Dwyer and Kan look at this `nerve-realization' context from a different viewpoint, using the term `singular functor' where the above has used `nerve'. Their motivation example is that in which $S$ is the [[orbit category]] of a group $G$, and the realisation starts with a functor on that category with values in spaces and returns a $G$-space: \begin{itemize}% \item [[W. G. Dwyer]] and [[D. M. Kan]], \emph{Singular functors and realization functors}, Nederl. Akad. Wetensch. Indag. Math., 87, (1984), 147 -- 153. \end{itemize} We should also mention the treatment in Leinster's book and the relation to the notions of [[dense subcategory]] or adequate subcategory in the sense of Isbell. In a \href{https://golem.ph.utexas.edu/category/2010/02/sheaves_do_not_belong_to_algeb.html}{blog post} on the n-Category Caf\'e{}, Tom Leinster illustrates that ``sections of a bundle'' is a nerve operation, and its corresponding geometric realization is the construction of the \'e{}tal\'e{} space of a presheaf. [[!redirects realization]] [[!redirects realizations]] \end{document}