\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{non-unital operad} \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{non-unital operad} is a structure like an [[operad]] but without a unit or operadic identity. However, in contrast to operads where the multiplication operation substitutes $m$ operations simultaneously into a single $m$-ary operation, the primary operations for a non-unital operad are ones which substitute only one operation at a time. It is possible to package these individual substitution operations into a single operation, using not the [[plethysm|plethystic]] or substitution monoidal product (usually denoted $\circ$) but a certain lax monoidal product introduced below, called the \emph{graft product}. At all events, it must be understood that the desired notion is not simply a species equipped $F$ equipped with an associative product $F \circ F \to F$, because that is not expressive enough. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} There are various possible notions of non-unital operad; here we focus on the permutative and non-permutative cases. \hypertarget{graft_product_of_permutative_species}{}\subsubsection*{{Graft product of (permutative) species}}\label{graft_product_of_permutative_species} Let $FB$ be the monoidal groupoid of finite sets and bijections, where the monoidal product is obtained by restricting the coproduct on the category of finite sets. Let $F, G: FB \to V$ be (Joyal) species valued in a bicomplete symmetric monoidal closed category $V$. The \textbf{graft product} $F \ast G$ is defined by the formula \begin{displaymath} (F \ast G)[S] = \sum_{T \subseteq S} F[S/T] \otimes G[T] \end{displaymath} where $S/T$ denotes the pushout of $T \to 1$ along the inclusion $T \subseteq S$ in the category of finite sets. This includes the degenerate case where $T = 0$; in this case $S/0$ is the result of freely adjoining a point to $S$. In the theory of species, there is a fundamental differentiation functor $F \mapsto F'$ defined by the formula $F'[S] = F[S/0]$. The set $S/T$ has $T/T$ as distinguished basepoint, and if $U$ is complementary to $T$, we have natural bijections $S/T \cong U + \{T/T\} \cong U/0$. It follows that \begin{displaymath} \itexarray{ (F \ast G)[S] & \cong & \sum_{U + T = S} F[U + *] \otimes G[T] \\ & \cong & \sum_{U + T = S} F'[U] \otimes G[T] \\ & \cong & (F' \otimes G)[S] } \end{displaymath} where $\otimes$ refers to the usual Day convolution product on species, induced from the tensor product on $FB$. Since differentiation of species, \begin{displaymath} V^{FB} \stackrel{- + *}{\to} V^{FB}, \end{displaymath} is cocontinuous, and since Day convolution is cocontinuous in each of its arguments, we see that \begin{displaymath} F \ast G \cong F' \otimes G \end{displaymath} is separately cocontinuous in each of its arguments $F$, $G$. (Contrast with the plethystic or substitution product on species $F \circ G$, which is cocontinuous in the first argument $F$ but not in the second $G$.) For $V = Set$, a structure of species $F \ast G$ is given by three data: \begin{itemize}% \item A tree obtained by grafting the root of a sprout (aka corolla) with leaf set $\tau$ to a leaf of another sprout with leaf set $\sigma$; \item An element of $F[\sigma]$; \item An element of $G[\tau]$. \end{itemize} \hypertarget{lax_monoidal_structure_of_graft_product}{}\subsubsection*{{Lax monoidal structure of graft product}}\label{lax_monoidal_structure_of_graft_product} The graft poduct is not associative up to isomorphism, but there is a lax associativity. Specifically, we calculate (using a categorified [[Leibniz rule]]) \begin{displaymath} \itexarray{ (F \ast G) \ast H & \cong & (F' \otimes G)' \otimes H \\ & \cong & F'' \otimes G \otimes H + F' \otimes G' \otimes H \\ & \cong & F'' \otimes G \otimes H + F \ast (G \ast H) } \end{displaymath} so that there is a noninvertible associativity (an inclusion) \begin{displaymath} \alpha_{F G H}: F \ast (G \ast H) \to (F \ast G) \ast H \end{displaymath} which is natural in each of its arguments $F$, $G$, and $H$, and which satisfies an evident pentagon coherence condition. Additionally (although we won't really need this here), there is a lax monoidal unit, defined as the species $X$ for which $X[S]$ is the monoidal unit of $V$ if $card(S) = 1$, else $X[S]$ is initial, for which we have evident natural maps \begin{displaymath} \lambda_F: X \ast F \to F, \qquad \rho_F: F \ast X \to F \end{displaymath} The first map $\lambda_F$ is invertible, but the second is not: its component at a finite set $S$ is the codiagonal \begin{displaymath} \nabla: S \cdot F[S] \to F[S] \end{displaymath} However, the standard unit coherence conditions for monoidal categories hold. We may call such a structure, relaxing the condition of invertibility of $\alpha$ and $\rho$ but retaining the usual naturality and coherence conditions, a \textbf{lax monoidal category}. In the sequel, $F^{\ast n}$ will denote the iterated graft product defined recursively by \begin{displaymath} F^{\ast 0} = X, \qquad F^{\ast (n+1)} = F^{\ast n} \ast F \end{displaymath} so that all parentheses in $F^{\ast n}$ are to the left. We state without proof the following partial coherence theorem: \begin{prop} \label{}\hypertarget{}{} Any two maps \begin{displaymath} F^{\ast m} \ast F^{\ast n} \to F^{\ast (m+n)} \end{displaymath} definable in the language of lax monoidal categories are equal. We denote this map by $\alpha_{m n}$. \end{prop} \hypertarget{permutative_nonunital_operads}{}\subsubsection*{{Permutative non-unital operads}}\label{permutative_nonunital_operads} \begin{defn} \label{}\hypertarget{}{} A (permutative) \emph{non-unital operad} in a [[cosmos]] $V$ is a [[species]] $F: FB^{op} \to V$ equipped with a multiplication $m: F \ast F \to F$, satisfying the following two associativity axioms: \begin{enumerate}% \item \begin{displaymath} \itexarray{ F \ast (F \ast F) & \stackrel{1 \ast m}{\to} & F \ast F & \\ \alpha \downarrow & & & \searrow m \\ (F \ast F) \ast F & \underset{m \ast 1}{\to} F \ast F & \underset{m}{\to} & F } \end{displaymath} commutes; \item The two composites $F'' \otimes F^{\otimes 2} \to F$ named in \begin{displaymath} F'' \otimes (F \otimes F) \stackrel{\overset{\sigma}{\to}}{\underset{1}{\to}} F'' \otimes (F \otimes F) \stackrel{i}{\to} (F \ast F) \ast F \stackrel{m(m \ast 1)}{\to} F \end{displaymath} commute. Here $i$ denotes the inclusion complementary to $\alpha: F \ast (F \ast F) \to (F \ast F) \ast F$, and $\sigma$ is the involution \begin{displaymath} \sigma_1 \otimes \sigma_2: F'' \otimes F^{\otimes 2} \to F'' \otimes F^{\otimes 2} \end{displaymath} where $\sigma: F'' \to F''$ is the natural involution on the second derivative \begin{displaymath} (-)'' = (- + 2)*: V^{FB} \to V^{FB} \end{displaymath} induced by the nonidentity involution $2 \to 2$, and $\sigma_2$ is the symmetry isomorphism $F^{\otimes 2} \to F^{\otimes 2}$. \end{enumerate} \end{defn} Of course the notion can be reformulated perfectly well in a general symmetric monoidal category; the use of coproducts just makes for a more efficient packaging. \hypertarget{graft_product_of_nonpermutative_species}{}\subsubsection*{{Graft product of (non-permutative) species}}\label{graft_product_of_nonpermutative_species} A non-permutative species in a [[monoidally cocomplete category]] $V$ is simply an $\mathbb{N}$-[[graded object]] in $V$, which we may think of as equivalent to a functor $\mathbb{N} \to V$ from the monoidal groupoid of finite [[linear orders]], with the monoidal product given by restriction of the [[ordinal sum]] to the [[core]] groupoid. If $S$ is a finite linear order and $T = [a, b] \subseteq S$ is a [[subinterval]] of $S$, then we may again define $S/T$ via a pushout construction in the category of finite linear orders, and define a corresponding graft product by the formula \begin{displaymath} (F \ast G)[S] = \sum_{subintervals T} F[S/T] \otimes G[T]. \end{displaymath} This graft product shares certain formal properties with the permutative graft product defined above, such as the fact that it is a lax monoidal product. A triple graft product $(F \ast G) \ast H$ cab be decomposed as a coproduct of parts, the first being \begin{displaymath} F \ast (G \ast H)[S] = \sum_{subintervals T_1 \subseteq T_2} F[S/T_2] \otimes G[T_2/T_1] \otimes H[T_1] \end{displaymath} and the second being \begin{displaymath} \sum_{subint. T_1, T_2: T_1 \cap T_2 = \emptyset} F[S/(T_1, T_2)] \otimes G[T_1] \otimes H[T_2] \end{displaymath} where $S/(T_1, T_2)$ denotes the pushout of the inclusion $T_1 + T_2 \hookrightarrow S$ along the quotient $! + !: T_1 + T_2 \to 1 + 1$. By interchanging the roles of $T_1$ and $T_2$, we get a nontrivial involution on the second part. To be continued\ldots{} \end{document}