\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{nonabelian Hodge theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \begin{quote}% \textbf{under construction} \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{nonabelian_hodge_theorems}{Nonabelian Hodge theorems}\dotfill \pageref*{nonabelian_hodge_theorems} \linebreak \noindent\hyperlink{nonabelian_harmonic_sections}{Nonabelian harmonic sections}\dotfill \pageref*{nonabelian_harmonic_sections} \linebreak \noindent\hyperlink{LocalSystemsAndHiggsBundles}{K\"a{}hler case: Equivalence between Local systems and Higgs bundles}\dotfill \pageref*{LocalSystemsAndHiggsBundles} \linebreak \noindent\hyperlink{relation_to_the_abelian_hodge_theorem}{Relation to the abelian Hodge theorem}\dotfill \pageref*{relation_to_the_abelian_hodge_theorem} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{generalizations_to_twisted_bundles}{Generalizations to twisted bundles}\dotfill \pageref*{generalizations_to_twisted_bundles} \linebreak \noindent\hyperlink{relation_to_geometric_langlands}{Relation to geometric Langlands}\dotfill \pageref*{relation_to_geometric_langlands} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Nonabelian Hodge theory generalizes aspects of [[Hodge theory]] from abelian cohomology ([[abelian sheaf cohomology]]) to [[nonabelian cohomology]]. \hypertarget{nonabelian_hodge_theorems}{}\subsection*{{Nonabelian Hodge theorems}}\label{nonabelian_hodge_theorems} \hypertarget{nonabelian_harmonic_sections}{}\subsubsection*{{Nonabelian harmonic sections}}\label{nonabelian_harmonic_sections} Notice or recall (for instance from [[generalized universal bundle]] and [[action groupoid]]) the following equivalent description of [[section]]s of [[associated bundle]]s: for $G$ a [[group]] with [[action]] $\rho$ on an object $V$ witnessed by the [[action groupoid]] sequence \begin{displaymath} V \to V//G \to \mathbf{B}G \end{displaymath} the $\rho$-[[associated bundle]] $E \to X$ to a $G$-[[principal bundle]] $P \to X$ classified by an [[anafunctor]] $X \stackrel{\simeq}{\leftarrow} Y \to \mathbf{B}G$ is the [[pullback]] \begin{displaymath} \itexarray{ E &\to& V//G \\ \downarrow && \downarrow \\ Y &\to& \mathbf{B}G } \,. \end{displaymath} Since this is a [[pullback]] diagram by definition, a glance at a pasting diagram of the form \begin{displaymath} \itexarray{ && E &\to& V//G \\ & \nearrow & \downarrow && \downarrow \\ Y &\stackrel{=}{\to}& Y &\to& \mathbf{B}G } \end{displaymath} shows that [[section]]s \begin{displaymath} \itexarray{ && E \\ & {}^{\sigma}\nearrow & \downarrow \\ Y &\stackrel{=}{\to}& Y } \end{displaymath} are in bijection with maps $Y \to V//G$ that make \begin{displaymath} \itexarray{ Y &\to& V//G \\ \downarrow^= && \downarrow \\ Y &\to& \mathbf{B}G } \end{displaymath} commute. In the special case that $X$ is a connected [[manifold]] and $G$ a discrete group we can without restriction take $Y = \hat X//\pi_1(X)$ be the [[action groupoid]] of the [[universal cover]] by the [[fundamental group|homotopy group]], so that the classifying map $Y \to \mathbf{B}G$ is the same as a [[group]] homomorphism \begin{displaymath} \rho : \pi_1(X) \to G \,. \end{displaymath} In that case the above says that a section of the associated bundle is a $\rho$-equivariant map \begin{displaymath} \phi : \hat X \to V \,. \end{displaymath} This is the way these sections are formulated usually in the literature. The above description has the advantage that it works more generally in [[nonabelian cohomology]] for [[principal bundle]]s generalized to [[principal ∞-bundle]]s. Next consider furthermore the special case that $V = G/K$ is the [[coset]] [[homogeneous space]] of $G$ quotiented by a subgroup $K$. Then if $G$ is a [[Lie group]] or [[algebraic group]] consider moreover a choice of $G$-invariant metric on the quotient $G/K$. Also consider a [[Riemannian manifold]] structure on $X$. Then \begin{defin} \label{}\hypertarget{}{} The \textbf{energy} of a [[section]] $\sigma$ of an associated $G/K$-bundle as above is the real number \begin{displaymath} E(\phi) := \int_X |d \phi|^2 \,. \end{displaymath} \end{defin} Here \begin{itemize}% \item $\phi$ is the $\rho$-equivariant map describing the section as above, \item the [[norm]] is taken with respect to the chocen invariant [[metric]] on $G/K$ \item and the [[integral]] is taken with respect to the [[Riemannian metric]] on $X$. \end{itemize} \begin{defn} \label{}\hypertarget{}{} Such a $\phi$ is called \textbf{harmonic} if it is a [[critical point]] of $E(-)$. \end{defn} \begin{theorem} \label{}\hypertarget{}{} \textbf{(Corlette, generalizing Eells-Sampson)} If $\rho : \pi_1(X) \to G$ is a representation with \begin{itemize}% \item $G$ a [[reductive group|reductive]] [[algebraic group]] \item $K$ is a [[maximal compact subgroup]] \item $\rho(\pi_1(X))$ is \begin{itemize}% \item Zariski-dense in $G$ \item or its Zariski-closure is itself reductive \end{itemize} \end{itemize} then there exists a \emph{harmonic} section $\phi$ in the above sense. \end{theorem} This is due to (\hyperlink{Corlette88}{Corlett 88}). A version of the proof is reproduced in \hyperlink{Simpson96}{Simpson 96, p. 8} \hypertarget{LocalSystemsAndHiggsBundles}{}\subsubsection*{{K\"a{}hler case: Equivalence between Local systems and Higgs bundles}}\label{LocalSystemsAndHiggsBundles} The \emph{nonabelian Hodge theorem} due to (\hyperlink{Simpson92}{Simpson 92}) establishes, for $X$ a [[compact topological space|compact]] [[Kähler manifold]], an [[equivalence]] between (irreducible) [[flat vector bundles]] on $X$ and (stable) [[Higgs bundles]] with vanishing [[first Chern class]]. \hypertarget{relation_to_the_abelian_hodge_theorem}{}\paragraph*{{Relation to the abelian Hodge theorem}}\label{relation_to_the_abelian_hodge_theorem} The sense in which the nonabelian Hodge theorem of (\hyperlink{Simpson92}{Simpson 92}) generalizes the abelian [[Hodge theorem]] is the following (\hyperlink{Simpson92}{Simpson 92, Introduction}). The abelian [[cohomology group]] $H^1(X,\mathbb{C}_{disc})$ classifies [[flat vector bundle|flat]] [[complex line bundles]] whose underlying [[line bundle]] is trivial, hence closed [[differential 1-forms]] modulo 0-forms. The abelian [[Hodge theorem]] gives for this hence the decomposition \begin{displaymath} H^1(X,\mathbb{C}_{disc}) \simeq H^1(X, \mathcal{O}_X) \oplus H^0(X, \Omega^1_X) \,. \end{displaymath} It is this kind of relation which is generalized by the nonabelian Hodge theorem. Here one starts instead with the [[nonabelian cohomology]] set $H^1(X, GL_n(\mathbb{C})_{disc})$ which classifies [[flat vector bundle|flat]] [[rank]]-$n$ [[vector bundles]] on $X$, for $n \in \mathbb{N}$. The equivalence to [[Higgs bundles]] gives now a decomposition of these structures into a [[holomorphic vector bundle]] classified by $H^1(X, GL_n(\mathcal{O}_X))$ and a differential 1-form with values in endomorphisms of that, subject to some conditions. \hypertarget{statement}{}\paragraph*{{Statement}}\label{statement} A quick review of the theorem in (\hyperlink{Simpson92}{Simpson 92}) is for instance in (\hyperlink{Raboso14}{Raboso 14, section 1.2}). An elegant abstract reformulation in terms of [[differential cohesion]]/[[D-geometry]], following (\hyperlink{Simpson96}{Simpson 96}) is in (\hyperlink{Raboso14}{Raboso 14, section 4.2.1}): Analogous to how the [[de Rham stack]] $\int_{inf} X = X_{dR}$ of $X$ is the ([[homotopy quotient|homotopy]]) [[quotient]] of $X$ by the first order [[infinitesimal neighbourhood]] of the [[diagonal]] in $X \times X$, so there is a space ([[stack]]) $X_{Dol}$ which is the formal competion of the 0-section of the [[tangent bundle]] of $X$ (\hyperlink{Simpson96}{Simpson 96}). Now a [[flat vector bundle]] on $X$ is essentially just a [[vector bundle]] on the [[de Rham stack]] $X_{dR}$, and a [[Higgs bundle]] is essentially just a [[vector bundle]] on $X_{Dol}$. Therefore in this language the nonabelian Hodge theorem reads (for $G$ a linear [[algebraic group]] over $\mathbb{C}$) \begin{displaymath} \mathbf{H}(X_{dR}, \mathbf{B}G) \simeq \mathbf{H}(X_{Dol}, \mathbf{B}G)^{ss,0} \,, \end{displaymath} where the superscript on the right denotes restriction to semistable Higgs bundles with vanishing [[first Chern class]] (see \hyperlink{Raboso14}{Raboso 14, theorem 4.2}). \hypertarget{generalizations_to_twisted_bundles}{}\paragraph*{{Generalizations to twisted bundles}}\label{generalizations_to_twisted_bundles} A generalization of the nonabelian Hodge theorem of (\hyperlink{Simpson92}{Simpson 92}) to [[twisted bundles]] in discussed in (\hyperlink{Raboso14}{Raboso 14}). \hypertarget{relation_to_geometric_langlands}{}\subsection*{{Relation to geometric Langlands}}\label{relation_to_geometric_langlands} Nonabelian Hodge theory is closely related to the [[geometric Langlands correspondence]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hodge structure]] \item [[noncommutative Hodge theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Lecture notes on nonabelian Hodge theory include: \begin{itemize}% \item [[Ron Donagi]], [[Tony Pantev]], \emph{Lectures on the geometric Langlands conjecture and non-abelian Hodge theory}, 2009 (\href{http://www.icmat.es/seminarios/langlands/school/handouts/pantev.pdf}{pdf}) \item [[Alberto García Raboso]], [[Steven Rayan]], \emph{Introduction to Nonabelian Hodge Theory: flat connections, Higgs bundles, and complex variations of Hodge structure}, Fields Inst. Monogr. 34 (2015), 131--171 (\href{https://arxiv.org/abs/1406.1693}{arXiv}) (\href{http://link.springer.com/chapter/10.1007/978-1-4939-2830-9_5}{Springer}) \end{itemize} Corlette's nonabelian Hodge theorem can be found in: \begin{itemize}% \item K. Corlette, \emph{Flat $G$-bundles with canonical metric}, J. Diff Geometry 28 (1988) \end{itemize} Works by [[Carlos Simpson]] on nonabelian Hodge theory include: \begin{itemize}% \item [[Carlos Simpson]], \emph{Higgs bundles and local systems}, Inst. Hautes Etudes Sci. Publ. Math. (1992), no. 75, 5\{95. MR 1179076 (94d:32027) (\href{http://www.numdam.org/item?id=PMIHES_1992__75__5_0}{numdam}) \item [[Carlos Simpson]], \emph{The Hodge filtration on nonabelian cohomology}, Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 217\{281. MR 1492538 (99g:14028) (\href{http://arxiv.org/abs/alg-geom/9604005}{arXiv:9604005}) \item [[Carlos Simpson]], \emph{Secondary Kodaira-Spencer classes and nonabelian Dolbeault cohomology} (\href{http://arxiv.org/abs/alg-geom/9712020}{arXiv:9712020}) \item [[Carlos Simpson]], \emph{Algebraic aspects of higher nonabelian Hodge theory} (\href{http://arxiv.org/abs/math/9902067}{arXiv:9902067}) \item [[Carlos Simpson]], [[Tony Pantev]], [[Ludmil Katzarkov]], \emph{Nonabelian mixed Hodge structures} (\href{http://arxiv.org/abs/math/0006213}{arXiv}) \end{itemize} The nonabelian Hodge theorem of (\hyperlink{Simpson92}{Simpson 92}) is generalized to [[twisted bundles]] in: \begin{itemize}% \item [[Alberto García Raboso]], \emph{A twisted nonabelian Hodge correspondence}, PhD thesis 2014 (\href{http://arxiv.org/abs/1501.05872}{arXiv:1501.05872}, \href{http://www.math.toronto.edu/agraboso/files/TwistedNAHT_Talk_Handout.pdf}{pdf slides}) \end{itemize} [[!redirects nonabelian Hodge theorem]] [[!redirects nonabelian Hodge theorems]] \end{document}