\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{nonabelian cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{history}{History}\dotfill \pageref*{history} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{postnikov_decomposition_and_whitehead_principle}{Postnikov decomposition and Whitehead principle}\dotfill \pageref*{postnikov_decomposition_and_whitehead_principle} \linebreak \noindent\hyperlink{special_cases}{Special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{nonabelian_group_cohomology}{Nonabelian group cohomology}\dotfill \pageref*{nonabelian_group_cohomology} \linebreak \noindent\hyperlink{NonabelianSheafCohomology}{Nonabelian sheaf cohomology with constant coefficients}\dotfill \pageref*{NonabelianSheafCohomology} \linebreak \noindent\hyperlink{petit_sheaf_topos}{Petit $(\infty,1)$-sheaf $(\infty,1)$-topos}\dotfill \pageref*{petit_sheaf_topos} \linebreak \noindent\hyperlink{gros_sheaf_topos}{Gros $(\infty,1)$-sheaf $(\infty,1)$-topos}\dotfill \pageref*{gros_sheaf_topos} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{objects_classified_by_nonabelian_cohomology}{Objects classified by nonabelian cohomology}\dotfill \pageref*{objects_classified_by_nonabelian_cohomology} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of [[cohomology]] finds its natural general formulation in terms of [[hom-space]]s in an [[(∞,1)-topos]], as described at [[cohomology]]. Much of the cohomologies which have been traditionally considered, such as [[abelian sheaf cohomology|sheaf cohomology]] turn out to be just a special case of the general situation, for objects which are sufficiently abelian in the sense of [[stable (infinity,1)-category|stable (∞,1)-categories]]. Therefore to amplify that one is looking at general [[cohomology]] without restricting to [[abelian sheaf cohomology|abelian cohomology]] one sometimes speaks of \textbf{nonabelian cohomology}. \hypertarget{history}{}\subsection*{{History}}\label{history} It was originally apparently John Roberts who understood (remarkably: while thinking about [[quantum field theory]] in the guise of [[AQFT]]) that general cohomology is about coloring simplices in $\infty$-categories. \begin{itemize}% \item John E. Roberts, \emph{Mathematical Aspects of Local Cohomology} talk at Colloqium on Operator Algebras and their Applications to Mathematical Physics, Marseille 20-24 June, 1977 . \end{itemize} This is recounted for instance by Ross Street in \begin{itemize}% \item [[Ross Street]], \emph{Categorical and combinatorial aspects of descent theory} (\href{http://arxiv.org/ftp/math/papers/0303/0303175.pdf}{pdf}) \end{itemize} and \begin{itemize}% \item [[Ross Street]], \emph{An australian conspectus on higher categories} (\href{http://www.math.mq.edu.au/~street/Minneapolis.pdf}{pdf}). \end{itemize} Parallel to this development of the notion of [[descent|descent and codescent]] there was the development of [[homotopical cohomology theory]] as described in \begin{itemize}% \item Kenneth S. Brown, \emph{Abstract Homotopy Theory and Generalized Sheaf Cohomology}, Transactions of the American Mathematical Society, Vol. 186 (1973), 419-458 (\href{http://www.math.uni-hamburg.de/home/schreiber/Abstract%20homotopy%20theory%20and%20generalized%20sheaf%20cohomology.pdf}{pdf}) \end{itemize} The two approaches are different, but closely related. Their relation is via the notion of [[descent|codescent]]. There is a chain of inclusions \begin{displaymath} AbelianGroups \hookrightarrow ChainComplexesOfAbelianGroups \hookrightarrow CrossedComplexes \hookrightarrow \omega Groupoids \hookrightarrow \omega Categories \end{displaymath} along which one can generalize the coefficient objects of ordinary cohomology. (See [[strict omega-groupoid]], [[strict omega-category]]). Since doing so in particular generalizes abelian groups to nonabelian groups (but goes much further!) this is generally addressed as leading to \emph{nonabelian cohomology}. Depending on the [[model category|models]] chosen, there are different concrete realizations of nonabelian cohomology. For instance nonabelian [[Cech cohomology]] played a special role in the motivation of the notion of [[gerbe]]s (see in particular [[gerbe (in nonabelian cohomology)]]), concretely thought of in terms of [[pseudofunctor]]s at least in the context of nonabelian [[group cohomology]], while more abstract (and less explicit) [[homotopy theory]] methods dominate the discussion of [[infinity-stack]]s. Either way, one obtains a notion of \emph{cohomology on $\infty$-categories with coefficients in $\infty$-catgories}. This is, most generally, the setup of ``[[nonabelian cohomology]]''. This is conceptually best understood today in terms of [[Higher Topos Theory|higher topos theory]], using [[(infinity,1)-category of (infinity,1)-sheaves|(infinity,1)-categories of (infinity,1)-sheaves]]. This perspective on nonabelian cohomology is discussed for instance in \hyperlink{Toen02}{Toen 02} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{postnikov_decomposition_and_whitehead_principle}{}\subsubsection*{{Postnikov decomposition and Whitehead principle}}\label{postnikov_decomposition_and_whitehead_principle} In an [[(∞,1)-topos]] every object has a [[Postnikov tower in an (∞,1)-category]]. This means that in some sense general nonabelian cohomology can be decomposed into nonabelian cohomology in degree 1 and abelian cohomology in higher degrees, twisted by this nonabelian cohomology. This has been called (\hyperlink{Toen02}{To\"e{}n}) the [[Whitehead principle of nonabelian cohomology]]. \hypertarget{special_cases}{}\subsection*{{Special cases}}\label{special_cases} \hypertarget{nonabelian_group_cohomology}{}\subsubsection*{{Nonabelian group cohomology}}\label{nonabelian_group_cohomology} Sometimes the term \emph{nonabelian cohomology} is used in a more restrictive sense. Often people mean [[nonabelian group cohomology]] when they say nonabelian cohomology, hence restricting to the domains to [[group|groups]], which are [[groupoid|groupoids]] with a single object. This kind of nonabelian cohomology is discussed for instance in \begin{itemize}% \item [[John Baez]], [[Mike Shulman]], [[Lectures on n-Categories and Cohomology]] (\href{http://arxiv.org/abs/math.CT/0608420}{arXiv}). \end{itemize} That and how ordinary [[group cohomology]] is reproduced from the [[homotopical cohomology theory]] of [[strict omega-groupoid|strict omega-groupoids]] is discussed in detail in chapter 12 of \begin{itemize}% \item [[Ronnie Brown]], P. Higgins, R. Sivera, [[nonabelian algebraic topology|Nonabelian algebraic topology]]. \end{itemize} For more see \begin{itemize}% \item [[nonabelian group cohomology]]. \end{itemize} \hypertarget{NonabelianSheafCohomology}{}\subsubsection*{{Nonabelian sheaf cohomology with constant coefficients}}\label{NonabelianSheafCohomology} For $X$ a [[topological space]] and $A$ an [[∞-groupoid]], the standard way to define the [[nonabelian cohomology]] of $X$ with coefficients in $A$ is to define it as the intrinsic cohomology as seen in [[∞Grpd]] $\simeq$ [[Top]]: \begin{displaymath} H(X,A) := \pi_0 Top(X, |A|) \simeq \pi_0 \infty Func(Sing X, A) \,, \end{displaymath} where $|A|$ is the [[geometric realization]] of $A$ and $Sing X$ the [[fundamental ∞-groupoid]] of $X$. But both $X$ and $A$ here naturally can be regarded, in several ways, as objects of [[(∞,1)-category of (∞,1)-sheaves|(∞,1)-sheaf (∞,1)-topos]]es $\mathbf{H} = Sh_{(\infty,1)}(C)$ over nontrivial [[(∞,1)-site]]s $C$. The intrinsic cohomology of such $\mathbf{H}$ is a [[nonabelian cohomology|nonabelian sheaf cohomology]]. The following discusses two such choices for $\mathbf{H}$ such that the corresponding nonabelian sheaf cohomology coincides with $H(X,A)$ (for [[paracompact space|paracompact]] $X$). \hypertarget{petit_sheaf_topos}{}\paragraph*{{Petit $(\infty,1)$-sheaf $(\infty,1)$-topos}}\label{petit_sheaf_topos} For $X$ a [[topological space]] and $Op(X)$ its [[category of open subsets]] equipped with the canonical structure of an [[(∞,1)-site]], let \begin{displaymath} \mathbf{H} := Sh_{(\infty,1)}(X) := Sh_{(\infty,1)}(Op(X)) \end{displaymath} be the [[(∞,1)-category of (∞,1)-sheaves]] on $X$. The space $X$ itself is naturally identified with the [[terminal object]] $X = * \in Sh_{(\infty,1)}(X)$. This is the [[petit topos]] incarnation of $X$. Write \begin{displaymath} (LConst \dashv \Gamma) : Sh_{(\infty,1)}(X) \stackrel{\overset{LConst}{\leftarrow}}{\underset{\Gamma}{\to}} \infty Grpd \end{displaymath} be the [[global section]]s terminal [[geometric morphism]]. Under the [[constant (∞,1)-sheaf]] functor $LConst$ an an [[∞-groupoid]] $A \in \infty Grpd$ is regarded as an object $LConst A \in Sh_{(\infty,1)}(X)$. There is therefore the \emph{intrinsic} [[cohomology]] of the $(\infty,1)$-topos $Sh_{(\infty,1)}(X)$ with coefficients in the [[constant ∞-stack|constant (∞,1)-sheaf]] on $A$ \begin{displaymath} H'(X,A) := \pi_0 Sh_{(\infty,1)}(X)(X, LConst A) \,. \end{displaymath} This is [[cohomology with constant coefficients]]. Notice that since $X$ is in fact the [[terminal object]] of $Sh_{(\infty,1)}(X)$ and that $Sh_{(\infty,1)}(X)(X,-)$ is in fact that [[global section]]s functor, this is equivalently \begin{displaymath} \cdots \simeq \pi_0 \Gamma LConst A \,. \end{displaymath} \begin{utheorem} If $X$ is a [[paracompact space]], then these two definitins of [[nonabelian cohomology]] of $X$ with [[constant ∞-stack|constant coefficients]] $A \in \infty Grpd$ agree: \begin{displaymath} H(X,A) := \pi_0 \infty Grpd(Sing X,A) \simeq Sh_{(\infty,1)}(X)(X,LConst A) \,. \end{displaymath} \end{utheorem} This is [[Higher Topos Theory|HTT, theorem 7.1.0.1]]. See also [[(∞,1)-category of (∞,1)-sheaves]] for more. \hypertarget{gros_sheaf_topos}{}\paragraph*{{Gros $(\infty,1)$-sheaf $(\infty,1)$-topos}}\label{gros_sheaf_topos} Another alternative is to regard the space $X$ as an object in the [[cohesive (∞,1)-topos]] [[ETop∞Grpd]]. \begin{displaymath} (\Pi \dashv LConst \dashv \Gamma) : ETop\infty Grpd \stackrel{\overset{\Pi}{\to}}{\stackrel{\overset{LConst}{\leftarrow}}{\underset{\Gamma}{\to}}} \infty Grpd \,, \end{displaymath} with the further [[left adjoint]] $\Pi$ to $LConst$ being the intrinsic [[fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos]] functor. The intrinsic [[nonabelian cohomology]] in there also coincides with nonabelian cohomology in [[Top]]; even the full [[cocycle]] [[∞-groupoid]]s are equivalent: \begin{utheorem} For [[paracompact space|paracompact]] $X$ we have an equivalence of [[cocycle]] [[∞-groupoid]]s \begin{displaymath} ETop\infty Grpd(X, LConst A) \simeq Top(X, |A|) \end{displaymath} and hence in particular an isomorphism on cohomology \begin{displaymath} H(X,A) \simeq \pi_0 ETop\infty Grpd(X, LConst A) \end{displaymath} \end{utheorem} \begin{proof} See [[ETop∞Grpd]]. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Cohomotopy]] \end{itemize} \hypertarget{objects_classified_by_nonabelian_cohomology}{}\subsection*{{Objects classified by nonabelian cohomology}}\label{objects_classified_by_nonabelian_cohomology} For $g : X \to A$ a [[cocycle]] in nonabelian cohomology, we say the [[fibration sequence|homotopy fibers]] of $g$ is the object \emph{classified} by $g$. For examples and discussion of this see \begin{itemize}% \item [[principal bundle]] \item [[principal 2-bundle]], [[gerbe]] \item [[principal 3-bundle]], [[2-gerbe]] \item [[principal ∞-bundle]], [[∞-gerbe]] \item [[twisted form|twisted forms]] . \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} A readable survey on nonabelian cohomology is \begin{itemize}% \item [[Bertrand Toën]], \emph{Stacks and Non-abelian cohomology}, lecture at \emph{\href{https://www.msri.org/realvideo/index04.html}{Introductory Workshop on Algebraic Stacks, Intersection Theory, and Non-Abelian Hodge Theory}}, MSRI 2002 (\href{http://www.msri.org/publications/ln/msri/2002/introstacks/toen/1/index.html}{slides}, \href{http://www.msri.org/publications/ln/msri/2002/introstacks/toen/1/meta/aux/toen.ps}{ps}, \href{https://perso.math.univ-toulouse.fr/btoen/files/2015/02/msri2002.pdf}{pdf}) \end{itemize} A useful motivation is \begin{itemize}% \item Nicolas Addington, \emph{Fiber bundles and nonabelian cohomology} (\href{http://pages.uoregon.edu/adding/notes/gstc2007.pdf}{pdf}) \end{itemize} Early original references include \begin{itemize}% \item [[Paul Dedecker]], \emph{Cohomologie de dimension 2 \`a{} coefficients non ab\'e{}liens}, C. R. Acad. Sci. Paris, 247 (1958), 1160--1163; (with coefficients in certain [[2-group]]) \item [[John Duskin]], \emph{Non-abelian cohomology in a topos}, reprinted as: Reprints in Theory and Applications of Categories, No. 23 (2013) pp. 1-165 (\href{http://www.tac.mta.ca/tac/reprints/articles/23/tr23abs.html}{TAC}) \item [[Paul Dedecker]], A. Frei, \emph{Les relations d'\'e{}quivalence des morphismes de la suite exacte de cohomologie non ab\^e{}lienne}, C. R. Acad. Sci. Paris, 262(1966), 1298-1301 \item [[Paul Dedecker]], \emph{Three dimensional non-abelian cohomology for groups}, Category theory, homology theory and their applications, II (Battelle Institute Conf.) 1969 (\href{http://www.ams.org/mathscinet/pdf/263894.pdf?pg1=IID&s1=55880&vfpref=html&r=15}{MathSciNet}) (with coefficients in certain [[3-group]]s presented by [[crossed square]]s) \end{itemize} The standard classical monograph focusing on low-dimensional cases is \begin{itemize}% \item [[J. Giraud]], \emph{Cohomologie non ab\'e{}lienne} , Springer (1971) (aspects of classification of $G$-[[gerbe]]s by cohomology with coefficients in the [[automorphism 2-group]] $AUT(G)$, but imposes extra constraints) \end{itemize} The correct definition using crossed modules of sheaves then appeared in \begin{itemize}% \item Raymond Debremaeker, \emph{Cohomologie met waarden in een gekruiste groepenschoof op een situs}, PhD thesis, 1976 (Katholieke Universiteit te Leuven). English translation: \emph{Cohomology with values in a sheaf of crossed groups over a site}, arXiv:\href{https://arxiv.org/abs/1702.02128}{1702.02128} \item [[Larry Breen]], \emph{Bitorseurs et cohomologie non-Ab\'e{}lienne} , The Grothendieck Festschrift: a collection of articles written in honour of the 60th birthday of Alexander Grothendieck, Vol. I, edited P.Cartier, et al., Birkh\"a{}user, Boston, Basel, Berlin, 401-476, (1990) \item [[Ieke Moerdijk]], \emph{Lie Groupoids, Gerbes, and Non-Abelian Cohomology} (\href{http://www.springerlink.com/content/ul554x3077444545/}{journal}) \item [[Amnon Yekutieli]], Combinatorial descent data for gerbes, Journal of Noncommutative Geometry Volume 8, Issue 4, 2014, pp. 1083–1099, arXiv:1109.1919 (\href{https://www.math.bgu.ac.il/~amyekut/publications/comb-descent/comb-descent.html}{webpage}) \end{itemize} The classification of [[∞-gerbe]]s is secretly in \begin{itemize}% \item [[Matthias Wendt]], \emph{Classifying spaces and fibrations of simplicial sheaves} , Journal of Homotopy and Related Structures 6(1), 2011, pp. 1--38. (\href{http://arxiv.org/abs/1009.2930}{arXiv}) (\href{http://tcms.org.ge/Journals/JHRS/volumes/2011/volume6-1.htm}{published version}) \end{itemize} see the discussion at [[∞-gerbe]] for more on this. Carlos Simpson has studied [[nonabelian Hodge theory]]. \begin{itemize}% \item [[Carlos Simpson]], \emph{The Hodge filtration on nonabelian cohomology} (\href{http://arxiv.org/abs/alg-geom/9604005}{arXiv}) \item [[Carlos Simpson]], \emph{Secondary Kodaira-Spencer classes and nonabelian Dolbeault cohomology} (\href{http://arxiv.org/abs/alg-geom/9712020}{arXiv}) \item [[Carlos Simpson]], \emph{Algebraic aspects of higher nonabelian Hodge theory} (\href{http://arxiv.org/abs/math/9902067}{arXiv}) \item [[Carlos Simpson]], [[Tony Pantev]], [[Ludmil Katzarkov]], \emph{Nonabelian mixed Hodge structures} (\href{http://arxiv.org/abs/math/0006213}{arXiv}) \end{itemize} Some links and references can be found at Alsani's descent and category theory \href{http://north.ecc.edu/alsani/descent.html}{page}. In as far as nonabelian cohomology is nothing but the study of [[(infinity,1)-categorical hom-space|hom-spaces]] between [[∞-stack]]s, see also the references at [[∞-stack]]. The following thesis continues Street's treatment of nonabelian cohomology \begin{itemize}% \item [[Alexander Campbell]], \emph{A higher categorical approach to Giraud's non-abelian cohomology}, PhD thesis, Macquarie University 2016 \href{http://hdl.handle.net/1959.14/1261186}{http\char58\char47\char47hdl\char46handle\char46net\char47\char49\char57\char53\char57\char46\char49\char52\char47\char49\char50\char54\char49\char49\char56\char54} \end{itemize} [[!redirects non-abelian cohomology]] \end{document}