\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{nonabelian group cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] This entry largely discusses [[Schreier theory]] of nonabelian [[group extension]]s -- but from the [[nPOV]]. \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea_and_definition}{Idea and Definition}\dotfill \pageref*{idea_and_definition} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{degree_2_cocycles}{Degree 2 cocycles}\dotfill \pageref*{degree_2_cocycles} \linebreak \noindent\hyperlink{extensions_classified_by_degree_2cocycles}{Extensions classified by degree 2-cocycles}\dotfill \pageref*{extensions_classified_by_degree_2cocycles} \linebreak \noindent\hyperlink{Homotopy2Cocycle}{Homotopies between 2-cocycles}\dotfill \pageref*{Homotopy2Cocycle} \linebreak \noindent\hyperlink{nonabelian_lie_algebra_cohomology}{Nonabelian Lie algebra cohomology}\dotfill \pageref*{nonabelian_lie_algebra_cohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea_and_definition}{}\subsection*{{Idea and Definition}}\label{idea_and_definition} As [[group cohomology]] of a group $G$ is the cohomology of its [[delooping]] $\mathbf{B}G$, so \emph{nonabelian group cohomology} is the corresponding [[nonabelian cohomology]]. By the [[category theory|general abstract]] definition of [[cohomology]], the \emph{[[abelian group|abelian]]} [[group cohomology]] in degree $k \in \mathbb{N}$ of a [[group]] $G$ with coefficients in an abelian group $K$ is the set of [[equivalence classes]] of [[morphisms]] \begin{displaymath} H^n(G,K) = \{ \mathbf{B}G \to \mathbf{B}^n K \}_\sim \end{displaymath} in the [[(∞,1)-category]] [[∞Grpd]], from the [[delooping]] $\mathbf{B}G$ of $G$ to the $n$-fold delooping $\mathbf{B}^n K$ of $K$. However, if the group $K$ is not abelian, then its $n$-fold delooping does not exist for $n \geq 2$, so accordingly the above does not give a prescription for cohomology of $G$ with coefficients in a nonabelian group $K$ in degree greater than 1 (and in degree 1 group cohomology it is not very interesting). But for nonabelian $K$ there are higher groupoids that \emph{approximate} the non-existing higher deloopings. Nonabelian group cohomology is the [[cohomology]] of $\mathbf{B}G$ with coefficients in such approximations. More precisely, notice that for $n=2$ and $K$ abelian, the $n$-fold [[delooping]] $\mathbf{B}^2 K$ is the strict [[2-groupoid]] whose corresponding [[crossed complex]] is \begin{displaymath} [\mathbf{B}^2 K] = \left( K \to {*} \stackrel{\to}{\to} {*} \right) \,. \end{displaymath} But for every [[group]] $K$ there is also its [[2-group|automorphism 2-group]] $AUT(K)$. Its delooping corresponds to the [[crossed complex]] \begin{displaymath} [\mathbf{B} AUT(K)] = \left( K \stackrel{\delta = Ad}{\to} Aut(K) \stackrel{\to}{\to} {*} \right) \,, \end{displaymath} where the boundary map $\delta$ is the one that sends an element $k \in K$ to the automorphism $Ad(k) : k' \mapsto k k' k^{-1}$. So this looks much like $\mathbf{B}^2 K$ (when that exists) only that it has more elements in degree 1. Accordingly, what is called nonabelian group cohomology of $G$ with coefficients in $K$ is the set of equivalence classes of morphisms \begin{displaymath} H^2_{nonab}(G,K) := \{ \mathbf{B}G \to \mathbf{B}AUT(K) \}_\sim \,. \end{displaymath} Notice that when $K$ has nontrivial [[automorphism]]s, this differs in general from the ordinary degree 2 abelian group cohomology even if $K$ is abelian. It is a familiar fact that abelian group cohomology classifies (shifted) central [[group extension]]s. This is really nothing but the statement that to a morphism $\mathbf{B}G \to \mathbf{B}^n K$ we may associate its [[fibration sequence]] \begin{displaymath} \itexarray{ \mathbf{B}^{n-1} K& \to&\mathbf{B}\hat G &\to& {*} \\ \downarrow &&\downarrow && \downarrow \\ {*}& \to& \mathbf{B}G &\to& \mathbf{B}^n K } \end{displaymath} (where both squares are [[homotopy pullback]] squares). In particular, for $n = 2$ we get ordinary central extensions \begin{displaymath} \mathbf{B}K \to \mathbf{B}\hat G \to \mathbf{B}B \,. \end{displaymath} which may be looped to yield exact sequences of morphisms of groups \begin{displaymath} K \to \hat G \to B \,. \end{displaymath} In [[Schreier theory]] one notices that similarly nonabelian group cohomology in degree 2 classifies nonabelian [[group extension]]s, i.e. sequences \begin{displaymath} K \to \hat G \to G \,. \end{displaymath} As we shall discuss below, by following the [[category theory|abstract nonsense]] as described above, nonabelian degree 2 cocycles really classify something slightly richer, namely exact sequences of groupoids \begin{displaymath} Aut(K)//K \to Aut(K)//\hat G \to {*}//G \,, \end{displaymath} where the double slashes denote [[action groupoid]]s (and ${*}//G = \mathbf{B}G$). In the existing literature -- which does not usually present the picture quite in the way we are doing here -- nonabelian group cohomology is rarely considered beyond degree 2. But the picture does straightforwardly generalize. For instance degree 3 nonabelian cohomology of $G$ with coefficients in $K$ may be taken to be the [[cohomology]] of $\mathbf{B}G$ with coefficients in the 3-groupoid $\mathbf{B}AUT(AUT(K))$. \begin{displaymath} H^3_{nonab}(G,K) = \{\mathbf{B}G \to \mathbf{B}AUT(AUT(K))\}_\sim \,. \end{displaymath} And so on. \hypertarget{details}{}\subsection*{{Details}}\label{details} We work out in detail what nonabelian group cocycles, such as morphisms \begin{displaymath} \mathbf{B}G \to \mathbf{B}AUT(K) \end{displaymath} correspond to in terms of claassical group data, using the relation between [[strict 2-group]]s and [[crossed module]]s that is spelled out in detail at \href{http://ncatlab.org/nlab/show/strict+2-group#InTermsOfCrossedModules}{strict 2-group -- in terms of crossed modules}. For making the translation we follow the \textbf{convention LB} there. \hypertarget{degree_2_cocycles}{}\subsubsection*{{Degree 2 cocycles}}\label{degree_2_cocycles} \begin{uprop} Degree 2 cocycles of nonabelian group cohomology on $G$ with coefficients in $K$ are given by the following data: \begin{itemize}% \item a map $\psi : G \to Aut(K)$; \item a map $\chi : G \times G \to K$ \item subject to the constraint that for all $g_1, g_2 \in G$ we have \begin{displaymath} \psi(g_1 g_2) = Ad(\chi(g_1, g_2)) \psi(g_2) \psi(g_1) \,. \end{displaymath} \item and subject to the cocycle condition that for all $g_1, g_2, g_3 \in G$ we have \begin{displaymath} \chi(g_1 g_2, g_3) \psi(g_3)(\xi(g_1,g_2)) = \chi(g_1, g_2 g_3) \chi(g_2, g_3) \end{displaymath} \end{itemize} \end{uprop} \begin{proof} Use the identification of $\mathbf{B}AUT(K)$ with its [[crossed module]] $(A \stackrel{Ad}{\to} Aut(K))$ in the \emph{convention L B} as described at \href{http://ncatlab.org/nlab/show/strict+2-group#InTermsOfCrossedModules}{strict 2-group -- in terms of crossed modules} to translate the relevant diagrams -- which are of the sort spelled out in great detail at [[group cohomology]]: the first three items of the above describe the maps \begin{displaymath} (\psi, \chi) : \left( \itexarray{ && \bullet \\ & {}^{\mathllap{g_1}}\nearrow & \Downarrow^{\mathrlap{=}}& \searrow^{\mathrlap{g_2}} \\ \bullet &&\stackrel{g_1 g_2}{\to} && \bullet } \right) \;\;\; \mapsto \;\;\; \left( \itexarray{ && \bullet \\ & {}^{\mathllap{\psi(g_1)}}\nearrow & \Downarrow^{\mathrlap{\chi(g_1,g_2)}}& \searrow^{\mathrlap{\psi(g_2)}} \\ \bullet &&\stackrel{\psi(g_1 g_2)}{\to} && \bullet } \right) \,. \end{displaymath} The cocycle condition is the fact that this assignment has to make all tetrahedras commute (since there are only trivial [[k-morphism]]s with $k \geq 3$ in $\mathbf{B}AUT(K)$): \begin{displaymath} \itexarray{ \bullet &&\stackrel{\psi(g_2)}{\to}&& \bullet \\ \uparrow & \Downarrow{}^{\mathrlap{\chi(g_1, g_2)}} &&& \downarrow \\ {}^{\mathllap{\psi(g_1)}}\uparrow &&{}^{\mathllap{\psi(g_1 g_2)}}\nearrow&& \downarrow^{\mathrlap{\psi(g_3)}} \\ \uparrow &&& {}^{\mathllap{\chi(g_1 g_2, g_2)}}\Downarrow & \downarrow \\ \bullet &&\stackrel{\psi(g_3)}{\to}&& \bullet } \;\;\;\;\;\;\;\; = \;\;\;\;\;\;\;\; \itexarray{ \bullet &&\stackrel{\psi(g_2)}{\to}&& \bullet \\ \uparrow &&& {}^{\mathllap{\chi(g_2, g_3)}} \Downarrow & \downarrow \\ {}^{\mathllap{\psi(g_1)}}\uparrow &&\searrow^{\mathrlap{\psi(g_2 g_3)}}&& \downarrow^{\mathrlap{\psi(g_3)}} \\ \uparrow & \Downarrow{}^{\mathrlap{\chi(g_1 , g_2 g_3)}} &&& \downarrow \\ \bullet &&\stackrel{\psi(g_3)}{\to}&& \bullet } \end{displaymath} \end{proof} \begin{uremark} Precisely the same kind of ``twisted'' cocycles appear as the cocycles of nonabelian [[gerbe]]s and [[principal 2-bundle]]s: for a $K$-gerbe these are cocycles with coefficients in $\mathbf{B}AUT(K)$ but on a domain that is the [[discrete groupoid]] given by the given base space. \end{uremark} \hypertarget{extensions_classified_by_degree_2cocycles}{}\subsubsection*{{Extensions classified by degree 2-cocycles}}\label{extensions_classified_by_degree_2cocycles} The following statement is classically the central statement of [[Schreier theory]]. We state and prove it in the abstract nonsense context of general [[cohomology]], where the things classified by a cocycle are nothing but its [[homotopy fiber]]s. \begin{uprop} Cohomology classes of nonabelian 2-cocycles $(\psi, \chi) : \mathbf{B}G \to \mathbf{B}AUT(K)$ are in bijection with equivalence classes of extensions \begin{displaymath} K \to \hat G \to G \end{displaymath} \end{uprop} \begin{proof} In fact, we claim a bit more: we claim that the [[fibration sequence]] to the left defined by the cocycle $(\psi, \chi) : \mathbf{B}G \to \mathbf{B}AUT(K)$ is \begin{displaymath} \cdots \to Aut(K) \to Aut(K)//K \to Aut(K)//\hat G \to \mathbf{B}G \stackrel{(\psi,\xi)}{\to} \mathbf{B}AUT(K) \,, \end{displaymath} where \begin{displaymath} \hat G := K \times_{(\psi,\chi)} G \end{displaymath} is the twisted product of $K$ with $G$, using the maps $\chi$ and $\psi$, i.e. the group whose underlying set is the cartesian [[product]] $K \times G$ with multiplication given by \begin{displaymath} (k_1, g_1) (k_2, g_2) = \left( \chi(g_1,g_2) \psi(g_2)(k_1) k_2 \;\; , \;\; g_1 g_2 \right) \,. \end{displaymath} To see this, we compute the [[homotopy pullback]] \begin{displaymath} \itexarray{ Aut(K)//\hat G & \to & {*} \\ \downarrow && \downarrow \\ \mathbf{B}G &\stackrel{(\psi,\chi)}{\to}& \mathbf{B}AUT(K) } \end{displaymath} as the ordinary [[pullback]] \begin{displaymath} \itexarray{ Aut(K)//\hat G & \to & \mathbf{E}AUT(K) \\ \downarrow && \downarrow \\ \mathbf{B}G &\stackrel{(\psi,\chi)}{\to}& \mathbf{B}AUT(K) } \end{displaymath} as described at [[generalized universal bundle]]. ($\mathbf{E}AUT(K)$ is the universal $AUT(K)$-[[principal 2-bundle]]). Recall from the discussion there that a morphism in $\mathbf{AUT}(K)$ is a triangle \begin{displaymath} \itexarray{ && \bullet \\ & {}^{\mathllap{\alpha}}\swarrow &{}^\mathrlap{k}\swArrow& \searrow^{\mathrlap{\beta}} \\ \bullet &&\stackrel{\gamma}{\to}&& \bullet } \end{displaymath} in $\mathbf{B}AUT(K)$, and composition of morphisms is pasting of these triangles along their vertical edges. 2-morphisms in $\mathbf{E}AUT(K)$ are given by paper-cup pasting diagrams of such triangles in $\mathbf{B}AUT(K)$ Accordingly, the [[pullback]] $\mathbf{B}G \times_{(\psi,\xi)} \mathbf{E}AUT(K)$ has \begin{itemize}% \item objects are elements of $Aut(K)$ (this is the bit not seen in the classical picture of [[Schreier theory]], as that doesn't know about [[groupoid]]s); \item morphisms are pairs \begin{displaymath} (k,g) \;\;\; := \left( \itexarray{ && \bullet \\ & {}^{\mathllap{\alpha}}\swarrow &{}^\mathrlap{k}\swArrow& \searrow^{\mathrlap{\beta}} &&&&& \in \mathbf{AUT(K)} \\ \bullet &&\stackrel{\psi(g)}{\to}&& \bullet \\ \\ \bullet &&\stackrel{g}{\to}&& \bullet &&&& \in \mathbf{B}G } \right) \end{displaymath} \item 2-morphisms (thought of as 2-[[simplex]]es) take two such triangles $(k_1, g_1)$ and $(k_2, g_2)$ to the pair $(k', g_1, g_2)$, where $k'$ is given by the pasting diagram \begin{displaymath} \itexarray{ && \bullet \\ &\swarrow& \downarrow & \searrow \\ \downarrow &\Downarrow^{\mathrlap{k_1}}& \bullet &{}^{\mathllap{k_2}}\Downarrow& \downarrow \\ \downarrow & \nearrow &\Downarrow^{\mathrlap{\chi(g_1, g_2)}} & \searrow & \downarrow \\ \bullet && \stackrel{}{\to} && \bullet } \,. \end{displaymath} \end{itemize} Translating these diagrams into forumas using the \emph{convention LB} as described at \href{http://ncatlab.org/nlab/show/strict+2-group#InTermsOfCrossedModules}{strict 2-group -- in terms of crossed modules} yields the given formulas. \end{proof} \hypertarget{Homotopy2Cocycle}{}\subsubsection*{{Homotopies between 2-cocycles}}\label{Homotopy2Cocycle} Given two 2-cocycles \begin{displaymath} (\psi_1, \chi_1), (\psi_2, \chi_2) : \mathbf{B}G \to \mathbf{B}AUT(K) \end{displaymath} a homotopy (coboundary) between them is a [[transfor|transformation]] \begin{displaymath} \lambda : (\psi_1, \chi_1) \Rightarrow (\psi_2, \chi_2) \,. \end{displaymath} Its components \begin{displaymath} \lambda : (\bullet \stackrel{g}{\to} \bullet) \;\; \mapsto \;\; \left( \itexarray{ \bullet &\stackrel{\psi_1(g)}{\to}& \bullet \\ {}^{\mathllap{\lambda(\bullet)}} \downarrow &{}^{\mathllap{\lambda(g)}}\swArrow& \downarrow^{\mathrlap{\lambda(\bullet)}} \\ \bullet &\stackrel{\psi_2(g)}{\to}& \bullet } \right) \end{displaymath} are given in terms of group elements by \begin{itemize}% \item $\lambda(\bullet) \in Aut(K)$ \item $\{\lambda(g) \in K | g \in G\}$ \end{itemize} such that \begin{displaymath} \lambda(\bullet) \psi_1(g) = Ad(\lambda(g)) \psi_2(g) \lambda(\bullet) \,. \end{displaymath} The naturality condition on this datat is that for all $g_1, g_2 \in G$ we have \begin{displaymath} \itexarray{ && \bullet \\ & {}^{\mathllap{\psi_1(g_1)}}\nearrow &\Downarrow^{\chi_1(g_1,g_2)}& \searrow^{\mathrlap{\psi_1(g_2)}} \\ \bullet &&\stackrel{\psi_1(g_2 g_1)}{\to}&& \bullet \\ {}^{\mathllap{\lambda(\bullet)}}\downarrow && {}^{\mathllap{\lambda(g_1, g_2)}}\swArrow && \downarrow^{\mathrlap{\lambda(\bullet)}} \\ \bullet &&\stackrel{\psi_2(g_2 g_1)}{\to}&& \bullet } \;\;\;\;\;\;\;\; = \;\;\;\;\;\;\;\; \itexarray{ & {}^{\mathllap{\psi_1(g_1)}}\nearrow &\downarrow& \searrow^{\mathrlap{\psi_1(g_1)}} \\ \downarrow &{}^{\lambda(g_2)}\swArrow & \downarrow^{\mathrlap{\lambda(\bullet)}} &{}^{\lambda(g_2)}\swArrow& \downarrow \\ {}^{\mathllap{\lambda(\bullet)}}\downarrow & {}^{\mathllap{\psi_2(g_1)}} \nearrow & \Downarrow^{\chi_2(g_1,g_2)} & \searrow^{\mathrlap{\psi_2(g_2)}} & \downarrow^{\mathrlap{\lambda(\bullet)}} \\ \bullet &&\stackrel{\psi_2(g2 g_1)}{\to}&& \bullet } \end{displaymath} In terms of the \emph{conventionl LB} at \href{http://ncatlab.org/nlab/show/strict+2-group#InTermsOfCrossedModules}{strict 2-group -- in terms of crossed modules}, this is equivalent to the equation \begin{equation} \lambda(g_2 g_1) \; \rho(\lambda(\bullet))(\chi_1(g_1,g_2)) = \chi_2(g_1, g_2) \; \rho(\psi_1(g_2))(\lambda(g_2)) \; \lambda(g_2) \,. \label{homotopy}\end{equation} Compare this to the discussion of \href{http://ncatlab.org/nlab/show/group+extension#2Coboundaries}{2-coboundaries of extensions} at [[group extension]]. \hypertarget{nonabelian_lie_algebra_cohomology}{}\subsection*{{Nonabelian Lie algebra cohomology}}\label{nonabelian_lie_algebra_cohomology} When the groups in question are [[Lie group]]s, there is an [[infinitesimal object|infinitesimal]] version of nonabelian group cohomology: \begin{itemize}% \item [[nonabelian Lie algebra cohomology]] \end{itemize} See there for details. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[group cohomology]] \begin{itemize}% \item \textbf{nonabelian group cohomology}, [[groupoid cohomology]] \end{itemize} \item [[group extension]] \item [[Lie group cohomology]] \begin{itemize}% \item [[∞-Lie groupoid cohomology]] \end{itemize} \end{itemize} \end{document}