\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{noncommutative motive} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{motivic_cohomology}{}\paragraph*{{Motivic cohomology}}\label{motivic_cohomology} [[!include motivic cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{AsUniversalAditiveInvariant}{As the universal additive/localizing invariant}\dotfill \pageref*{AsUniversalAditiveInvariant} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{RelationToAlgebraicKTheory}{Relation to algebraic K-theory}\dotfill \pageref*{RelationToAlgebraicKTheory} \linebreak \noindent\hyperlink{RelationToCorrespondences}{Relation to correspondences equipped with cocycles}\dotfill \pageref*{RelationToCorrespondences} \linebreak \noindent\hyperlink{RelationToChowMotives}{Relation to Chow motives}\dotfill \pageref*{RelationToChowMotives} \linebreak \noindent\hyperlink{relation_to_kktheory}{Relation to KK-theory}\dotfill \pageref*{relation_to_kktheory} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of [[motives]] in algebraic geometry can be adapted to derived [[noncommutative geometry]]. The idea and the first version has been developed by [[Maxim Kontsevich]]. There is a remarkable observation that the [[category of Chow motives]] (after localizing at the [[Lefschetz motive]]) can be embedded into the category of Kontsevich's noncommutative motives. More recently this direction has been systematically studied by Cisinski and Tabuada. A second approach is due to [[Bertrand Toën]], [[Michel Vaquié]], [[Gabriele Vezzosi]]. They construct a [[motivic stable homotopy theory]] for [[noncommutative geometry|noncommutative spaces]] (in the sense of [[Kontsevich]]). There is another approach by [[Arne Ostvaer]]. In [[noncommutative geometry]] \`a{} la [[Alain Connes]], Connes and [[Matilde Marcolli]] have also introduced some motivic ideas. Marcolli also has a recent collaboration with Tabuada on the algebraic side, see her [[Matilde Marcolli|webpage]]. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{AsUniversalAditiveInvariant}{}\subsubsection*{{As the universal additive/localizing invariant}}\label{AsUniversalAditiveInvariant} The definition in (\hyperlink{BlumbergGepnerTabuada10}{Blumberg-Gepner-Tabuada 10}) is the following. \begin{defn} \label{Catperf}\hypertarget{Catperf}{} Write \begin{itemize}% \item (stable) $Cat_\infty^{stab}$ for the [[(∞,1)-category]] of [[stable (∞,1)-categories]]; \item (small with linear maps) $Cat_\infty^{ex}$ for the $(\infty,1)$-category of \emph{[[small (infinity,1)-category|small]]} stable $\infty$-categories with [[finite (infinity,1)-limit]]/colimit-preserving functors between them; \item (idem-complete) $Cat_\infty^{perf} \hookrightarrow Cat_\infty^{ex}$ for the further [[full sub-(infinity,1)-category]] of the small stable $\infty$-categories on the [[idempotent complete (infinity,1)-categories]]. \end{itemize} \end{defn} (\hyperlink{BlumbergGepnerTabuada10}{Blumberg-Gepner-Tabuada 10, def. 2.12 and above def 2.14}) \begin{prop} \label{IdempotentCompletion}\hypertarget{IdempotentCompletion}{} The inclusion from def. \ref{Catperf} is a [[reflective sub-(infinity,1)-category]] \begin{displaymath} Cat^{perf} \stackrel{\overset{Idem}{\longleftarrow}}{\hookrightarrow} Cat^{ex} \end{displaymath} the reflector $Idem$ being [[idempotent completion]]. \end{prop} \begin{remark} \label{}\hypertarget{}{} Passing to [[ind-objects]] yields an [[equivalence of (infinity,1)-categories]] \begin{displaymath} Ind \colon Cat_\infty^{per} \stackrel{\simeq}{\longrightarrow} Pr_{St,cg}^{L} \hookrightarrow Pr_{St}^{L} \end{displaymath} with the [[stable (infinity,1)-category|stable]] [[compactly generated (∞,1)-categories]]. \end{remark} ([[Higher Topos Theory|HTT, 5.5.7]]) \begin{defn} \label{MotitaEquivalence}\hypertarget{MotitaEquivalence}{} Say that a morphism in $Cat_\inty^{ex}$ is a [[Morita equivalence]] if it is an $Idem$-equivalence, hence if it becomes an [[equivalence of (∞,1)-categories]] under idempotent completion, prop. \ref{IdempotentCompletion}. \end{defn} \begin{defn} \label{ExactSequences}\hypertarget{ExactSequences}{} Say that a sequence in $Cat_\infty^{ex}$ is (split-)exact if it is an exact sequence (\ldots{}see section 5\ldots{}) under idempotent completion, prop. \ref{IdempotentCompletion} \end{defn} \begin{defn} \label{additiveinvariant}\hypertarget{additiveinvariant}{} A functor $Cat_\infty^{ex} \to \mathcal{D}$ to a stable [[presentable (∞,1)-category]] is called a \textbf{localizing invariant} (\textbf{additive invariant}) if it \begin{enumerate}% \item inverts Morita equivalences, def. \ref{MotitaEquivalence}; \item preserves [[filtered (∞,1)-colimits]]; \item sends (split-) exact sequences, def. \ref{ExactSequences}, to (split) cofiber sequences (\ldots{}see section 5\ldots{}). \end{enumerate} \end{defn} \begin{defn} \label{BGTCharacterization}\hypertarget{BGTCharacterization}{} The $(\infty,1)$-category $Mot_{add}$ or $Mot_{loc}$, respectively, of \textbf{noncommutative motives} is the [[universal construction|universal]] localizing/additive invariant, def. \ref{additiveinvariant} \begin{displaymath} \mathcal{U}_{loc} \colon Cat_\infty^{ex} \to Mot_{loc} \,. \end{displaymath} \begin{displaymath} \mathcal{U}_{add} \colon Cat_\infty^{ex} \to Mot_{add} \,. \end{displaymath} \end{defn} (\hyperlink{BlumbergGepnerTabuada10}{Blumberg-Gepner-Tabuada 10, theorem 1.1, section 8}) \begin{remark} \label{}\hypertarget{}{} The localization property here (be additive, invert Morita, preserve split sequences) is of the same form as that which defines the localization of [[C\emph{-algebras]] to [[KK-theory]] in [[noncommutative stable homotopy theory]]. See at \emph{\href{KK-theory#UniversalCharacterization}{KK-theory -- Universal characterization}}. See also (\hyperlink{BlumbergGepnerTabuada10}{Blumberg-Gepner-Tabuada 10, paragraph 1.5}).} \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{RelationToAlgebraicKTheory}{}\subsubsection*{{Relation to algebraic K-theory}}\label{RelationToAlgebraicKTheory} \begin{defn} \label{}\hypertarget{}{} For $\mathcal{A}, \mathcal{B} \in Cat_\infty^{stab}$ with $\mathcal{B}$ smooth and proper, hence a [[compact object in an (infinity,1)-category|compact object]], then the hom-[[spectrum]] in $Mot_{loc}$ between $\mathcal{A}$ and $\mathcal{B}$ is given by the [[non-connective algebraic K-theory]] $\mathbb{K}$ of the tensor product in that there is a [[natural equivalence]] \begin{displaymath} Hom_{Mot_{loc}}(\mathcal{U}_{loc}(\mathcal{B}), \mathcal{U}_{loc}(\mathcal{A})) \simeq \mathbb{K}(\mathcal{B}^{op}\widehat \otimes \mathcal{A}) \,. \end{displaymath} \end{defn} (\hyperlink{BlumbergGepnerTabuada10}{Blumberg-Gepner-Tabuada 10}, theorem 9.36) \hypertarget{RelationToCorrespondences}{}\subsubsection*{{Relation to correspondences equipped with cocycles}}\label{RelationToCorrespondences} By (\hyperlink{BlumbergGepnerTabuada10}{Blumberg-Gepner-Tabuada 10, theorem 9.36}), the morphisms of noncommutative motives from $\mathcal{A}$ to $\mathcal{B}$ for $\mathcal{B}$ suitably dualizable/compact are given by \begin{displaymath} Maps(\mathcal{U}_{loc}(\mathcal{B}), \mathcal{U}_{loc}(\mathcal{A})) \simeq \mathbb{K}(\mathcal{B}^{op}\otimes\mathcal{A}) \,, \end{displaymath} hence by the [[non-connective algebraic K-theory]] of the [[Deligne tensor product]] of the two categories. Thinking of these as categories of [[quasicoherent sheaves]] on some spaces (by definition in [[noncommutative algebraic geometry]]), this are $\mathbb{K}$-cocycles on the product [[correspondence]] space. (\ldots{}) \hypertarget{RelationToChowMotives}{}\subsubsection*{{Relation to Chow motives}}\label{RelationToChowMotives} The category of ordinary [[Chow motives]], after factoizing out the action of the [[Tate motive]] essentially sits inside that of noncommutative Chow motives. This is recalled as (\hyperlink{Tabuada11}{Tabuada 11, theorem 4.6}). For more see (\hyperlink{Tabuada11Chow}{Tabuada 11 ChowNCG}). This relation is best understood as being exhibited by [[K-motives]], see there. \hypertarget{relation_to_kktheory}{}\subsubsection*{{Relation to KK-theory}}\label{relation_to_kktheory} Noncommutative motives receive a universal functor from [[KK-theory]] \begin{displaymath} KK \longrightarrow NCC_{dg} \end{displaymath} which is given by sending a [[C\emph{-algebra]] to the [[dg-category]] of [[perfect complexes]] over (the [[unitalization]] of) its underlying [[associative algebra]] (\hyperlink{Mahanta13}{Mahanta 13}).} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item [[Tabuada]] has used noncommutative motives to compute the [[cyclic homology]] of [[twisted projective homogeneous varieties]]. Also, he showed that the noncommutative motive of such a variety is trivial if and only if the [[Brauer class|Brauer classes]] of the associated [[central simple algebras]] are trivial. See (\hyperlink{Tabuada13Twisted}{Tabuada 13}). \item Bernardara and Tabuada have used noncommutative motives to compute the rational [[Chow groups]] of certain complete [[intersections]] of [[curves]]. See (\hyperlink{BerTab13}{Bernardara-Tabuada 13}). \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[bivariant cohomology]], [[bivariant algebraic K-theory]] \item [[motivic symplectic category]] \item [[motive]] \begin{itemize}% \item [[pure motive]] \begin{itemize}% \item [[Chow motive]], [[numerical motive]] \end{itemize} \item [[mixed motive]] \end{itemize} \item [[motivic cohomology]] \end{itemize} [[!include noncommutative motives - table]] \hypertarget{References}{}\subsection*{{References}}\label{References} A survey is in \begin{itemize}% \item [[Goncalo Tabuada]], \emph{A guided tour through the garden of noncommutative motives}, in Guillermo Cortinas, \emph{Topics in Noncommutative Geometry} Clay Mathematics Proceedings Vol 16, 2012 (\href{http://arxiv.org/abs/1108.3787}{arxiv1108.3787}); \end{itemize} Discussion of [[Maxim Kontsevich]]`s definition of noncommutative motives include \begin{itemize}% \item [[Maxim Kontsevich]], \emph{Noncommutative motives}, talk at the conference on Pierre Deligne's 61st birthday (2005) ( of part of the talk, notes by [[Zoran Skoda]]) \item [[Maxim Kontsevich]], \emph{Geometry and Arithmetic - Non-commutative motives}, talk at Institute for Advanced Study October 20, 2005 (\href{http://video.ias.edu/Geometry-and-Arithmetic-Kontsevich}{video}) \end{itemize} The following article has the treatment of $A_\infty$-categories representing smooth, proper, separated etc. noncommutative varieties, notions which are used in Kontsevich's approach to motives in the above talks. \begin{itemize}% \item [[Ludmil Katzarkov]], [[Maxim Kontsevich]], [[Tony Pantev]], \emph{Hodge theoretic aspects of mirror symmetry}, in [[Ron Donagi]] and [[Katrin Wendland]] (eds.) \emph{From Hodge theory to integrability and TQFT: $tt^\ast$-geometry}, Proceedings of Symposia in Pure Mathematics vol. 78 (2008), 87-174 (\href{http://arxiv.org/abs/0806.0107}{arXiv:0806.0107}) \end{itemize} An abstract characterization of noncommutative motives in [[dg-category]] theory and higher [[algebraic K-theory]] is in \begin{itemize}% \item [[Denis-Charles Cisinski]], [[Gonçalo Tabuada]], \emph{Non connective K-theory via universal invariants}. Compositio Mathematica 147 (2011), 1281--1320 (\href{http://arxiv.org/abs/0903.3717}{arXiv:0903.3717}) \item [[Denis-Charles Cisinski]], [[Gonçalo Tabuada]], \emph{Symmetric monoidal structure on Non-commutative motives}, (\href{http://arxiv.org/abs/1001.0228}{arxiv/1001.0228}) \item [[Gonçalo Tabuada]], \emph{K-theory via universal invariants}, Duke Math. J. 145 (2008), no.1, 121--206. \end{itemize} and a further lift of this to [[(∞,1)-category theory]] is in \begin{itemize}% \item [[Andrew Blumberg]], [[David Gepner]], [[Gonçalo Tabuada]], \emph{A universal characterization of higher algebraic K-theory}, Geometry and Topology 17 (2013) 733--838 (\href{http://arxiv.org/abs/1001.2282}{arXiv:1001.2282}) \end{itemize} with discussion of the corresponding [[cyclotomic trace]] in \begin{itemize}% \item [[Andrew Blumberg]], [[David Gepner]], [[Gonçalo Tabuada]], \emph{Uniqueness of the multiplicative cyclotomic trace}, Advances in Mathematics (\href{http://arxiv.org/abs/1103.3923}{arXiv:1103.3923}) \end{itemize} See also \begin{itemize}% \item [[Goncalo Tabuada]], \emph{Bivariant cyclic cohomology and Connes' bilinear pairings in Non-commutative motives}, \href{http://arxiv.org/abs/1005.2336}{arxiv/1005.2336}; \emph{Products, multiplicative Chern characters, and finite coefficients via Non-commutative motives}, \href{http://arxiv.org/abs/1101.0731}{arxiv/1101.0731}; \item [[Goncalo Tabuada]], \emph{Chow motives versus non-commutative motives} (\href{http://arxiv.org/abs/1103.0200}{arxiv/1103.0200} \item [[Goncalo Tabuada]], \emph{Galois descent of additive invariants}, \href{http://arxiv.org/abs/1301.1928}{arxiv/1301.1928} \item [[Matilde Marcolli]], [[Goncalo Tabuada]], \emph{Kontsevich's noncommutative numerical motives}, \href{http://arxiv.org/abs/1108.3785}{arxiv/1108.3785}; \emph{Noncommutative motives, numerical equivalence, and semi-simplicity}, \href{http://arxiv.org/abs/1105.2950}{arxiv/1105.2950}; \emph{Noncommutative numerical motives, Tannakian structures, and motivic Galois groups}, \href{http://arxiv.org/abs/1110.2438}{arxiv/1110.2438} \item [[Ivo Dell'Ambrogio]], [[Gonçalo Tabuada]], \emph{Tensor triangular geometry of non-commutative motives}, \href{http://arxiv.org/abs/1104.2761}{arxiv/1104.2761} \end{itemize} For the approach of [[Bertrand Toën]]-[[Michel Vaquié]]-[[Gabriele Vezzosi]], see \begin{itemize}% \item [[Michel Vaquié]], \emph{A new approach on non commutative motives}, lecture at \href{http://www.mathematics.jhu.edu/new/jami2011/noncommgeo.htm}{JAMI 2011}. \href{http://streams1.nts.jhu.edu/mathematics/jami2011/}{video}, \href{http://streams1.nts.jhu.edu/mathematics/jami2011/jami2011pdf/Vaquie.pdf}{notes} \end{itemize} and the Ph.D. thesis of [[Marco Robalo]], under the supervision of [[Bertrand Toën]]: \begin{itemize}% \item [[Marco Robalo]], \emph{Noncommutative Motives I: A Universal Characterization of the Motivic Stable Homotopy Theory of Schemes}, June 2012 (\href{http://arxiv.org/abs/1206.3645}{arxiv:1206.3645}) \item [[Marco Robalo]], \emph{Noncommutative Motives II: K-Theory and Noncommutative Motives}, June 2013, (\href{http://arxiv.org/abs/1306.3795}{arxiv:1306.3795}) \end{itemize} Also the lectures notes: \begin{itemize}% \item [[Marco Robalo]], \emph{Noncommutative motives and K-theory}, talk at \href{http://www.mat.univie.ac.at/~favero/Workshops/Higher.html}{Higher Categories and Topological Quantum Field Theories, Vienna, 2013}, \href{http://www.mat.univie.ac.at/~favero/Workshops/here/NotesRobalo.pdf}{notes} \end{itemize} Another survey article is \begin{itemize}% \item [[Snigdhayan Mahanta]], Noncommutative geometry in the framework of differential graded categories, \href{http://arxiv.org/abs/0805.1628}{arXiv:0805.1628}. \end{itemize} Discussion of how the [[triangulated categories of sheaves|derived category]] of a [[scheme]] determines its commutative and [[noncommutative motive|noncommutative]] [[Chow motive]] is in \begin{itemize}% \item [[Adeel Khan]], \emph{On derived categories and noncommutative motives of varieties}, \href{http://arxiv.org/abs/1401.7222}{arXiv}. \end{itemize} In \begin{itemize}% \item [[Snigdhayan Mahanta]], \emph{Higher nonunital Quillen $K'$-theory, KK-dualities, and applications to topological T-duality}, (\href{http://wwwmath.uni-muenster.de/u/snigdhayan.mahanta/papers/KQ.pdf}{pdf}, \href{http://wwwmath.uni-muenster.de/u/snigdhayan.mahanta/papers/KKTD.pdf}{talk notes}) \end{itemize} it is shown that there is a universal functor $KK \longrightarrow NCC_{dg}$ from [[KK-theory]] to the category of [[noncommutative motives]], which is the category of [[dg-categories]] and dg-[[profunctors]] up to homotopy between them. This is given by sending a [[C\emph{-algebra]] to the [[dg-category]] of [[perfect complexes]] of (the unitalization of) its underlying [[associative algebra]].} \begin{itemize}% \item [[Goncalo Tabuada]], \emph{Additive invariants of toric and twisted projective homogeneous varieties via noncommutative motives}, (\href{http://arxiv.org/abs/1310.4063}{arXiv}). \item [[Marcello Bernardara]], [[Goncalo Tabuada]]. \emph{Chow groups of intersections of quadrics via homological projective duality and (Jacobians of) noncommutative motives.} (\href{http://arxiv.org/abs/1310.6020}{arXiv}) \end{itemize} category: algebraic geometry, noncommutative geometry [[!redirects noncommutative motif]] [[!redirects noncommutative motive]] [[!redirects noncommutative motives]] [[!redirects noncommutative motives]] [[!redirects noncommutative Chow motive]] [[!redirects noncommutative Chow motives]] [[!redirects (infinity,1)-category of non-commutative motives]] [[!redirects (∞,1)-category of non-commutative motives]] [[!redirects (infinity,1)-category of noncommutative motives]] [[!redirects (∞,1)-category of noncommutative motives]] [[!redirects (infinity,1)-categories of non-commutative motives]] [[!redirects (∞,1)-categories of non-commutative motives]] [[!redirects (infinity,1)-categories of noncommutative motives]] [[!redirects (∞,1)-categories of noncommutative motives]] [[!redirects non-commutative motive]] [[!redirects non-commutative motives]] \end{document}