\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{nonunital ring} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{for_rings}{For rings}\dotfill \pageref*{for_rings} \linebreak \noindent\hyperlink{for_algebras}{For $\mathbb{E}_k$-algebras}\dotfill \pageref*{for_algebras} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{unitization}{Unitization}\dotfill \pageref*{unitization} \linebreak \noindent\hyperlink{AsSlicesOfRings}{Nonunital rings as slices of rings}\dotfill \pageref*{AsSlicesOfRings} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{ReferencesTheory}{Nonunital ring theory}\dotfill \pageref*{ReferencesTheory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of \emph{nonunital ring} is like that of [[ring]] but without the requirement of the existence of an [[identity]] element (``unit'' element). Nonunital rings with [[homomorphisms]] between them form the [[category]] [[Rng]]. Historically, this was in fact the original meaning of ``ring'', and while mostly ``ring'' has come to mean by default the version with identity element, nonunital rings still play a role (see e.g. the review in \hyperlink{Anderson06}{Anderson 06}) and in some areas of mathematics ``nonunital ring'' is still the default meaning of ``ring''. In particular, non-unital rings may naturally be identified with the [[augmentation ideals]] of $\mathbb{Z}$-[[augmented algebra|augmented]] unital rings, see the discussion \hyperlink{AsSlicesOfRings}{below}. \begin{remark} \label{}\hypertarget{}{} The term ``non-unital ring'' may be regarded as an example of the ``[[red herring principle]]'', as a non-unital ring is not in general a ring in the modern sense of the word. In [[Bourbaki|Bourbaki 6, chapter 1]] the term \emph{pseudo-ring} is used, but that convention has not become established. Another terminology that has been suggested for ``nonunital ring'', and which is in use in part of the literature (e.g. \hyperlink{Anderson06}{Anderson 06}) is ``rng'', where dropping the ``i'' in ``ring'' is meant to be alluding to the absence of \emph{i}dentity elements. This terminology appears in print first in (\hyperlink{Jacobson}{Jacobson}), where it is attributed to Louis Rowen. Similarly there is, for whatever it's worth, the suggestion that a ring without negatives, hence a [[semiring]], should be called a \emph{[[rig]]} (although here one may make a technical distinction about the \emph{additive} identity). \end{remark} \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{for_rings}{}\subsubsection*{{For rings}}\label{for_rings} Specifically: \begin{defn} \label{}\hypertarget{}{} A \textbf{nonunital ring} or \emph{rng} is a [[set]] $R$ with operations of addition and multiplication, such that: \begin{itemize}% \item $R$ is a [[semigroup]] under multiplication; \item $R$ is an [[abelian group]] under addition; \item multiplication distributes over addition. \end{itemize} \end{defn} More sophisticatedly, we can say that, just as a ring is a [[monoid object]] in [[Ab]], so \begin{defn} \label{}\hypertarget{}{} A \emph{nonunital ring} or \emph{rng} is a [[semigroup]] object in [[Ab]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} A non-unital ring may well contain an element that behaves as the [[identity]] element, i.e. it may be in the image of the [[forgetful functor]] from unital rings to nonunital rings. But if so, then this element is still not part of the defining data and in particular a [[homomorphism]] of non-unital rings need not to preserve whatever identity elements may happen to be present. \end{remark} \hypertarget{for_algebras}{}\subsubsection*{{For $\mathbb{E}_k$-algebras}}\label{for_algebras} [[nonunital Ek-algebras]] are discussed in (\hyperlink{Lurie}{Lurie, section 5.2.3}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{unitization}{}\subsubsection*{{Unitization}}\label{unitization} \begin{defn} \label{Unitisation}\hypertarget{Unitisation}{} Given a non-unital commutative ring $A$, then its \emph{[[unitisation]]} is the [[commutative ring]] $F(A)$ obtained by [[free construction|freely]] adjoining an [[identity]] element, hence the ring whose underlying [[abelian group]] is the [[direct sum]] $\mathbb{Z} \oplus A$ of $A$ with the [[integers]], and whose product operation is defined by \begin{displaymath} (n_1, a_1) (n_2, a_2) \coloneqq (n_1 n_2, n_1 a_2 + n_2 a_1 + a_1 a_2) \,, \end{displaymath} where for $n \in \mathbb{Z}$ and $a \in A$ we set $n a \coloneqq \underset{n\;summands}{\underbrace{a + a + \cdots + a}}$. \end{defn} \begin{remark} \label{}\hypertarget{}{} In the unitization $\mathbb{Z} \oplus A$ we have $(n,0) + (0,a) = (n,a)$ and hence it makes sense to abbreviate $(n,a)$ simply to $n+a$. The product in the [[unitisation]] is then fixed by the defining requirement that $1 \cdot a = a$ and by the [[distributivity law]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} One can also think of the unitisation as the quotient of the polynomial ring ``$A[x]$'' ($A$ ``with a generic element adjoined'', i.e. a term algebra) quotiented by the relations $ax - a = 0, xa - a = 0$, so that this $x$ must be a right and left identity for multiplication $a$. Cosets must be represented by expressions of the form $a + nx$; this provides an obvious isomorphism to the above definition, and motivates the multiplication for $\mathbb{Z} \oplus A$ above. \end{remark} \begin{remark} \label{}\hypertarget{}{} Since $A$ embeds into its unitisation $F(A)$, every [[rng]] lives as an ideal in some [[unital ring|ring]]. We can consider $A$-linear actions $A \curvearrowright M$ on abelian groups $M$. Since the endomorphism rings of abelian groups are always unital, the [[universal property]] of the unitisation-forgetful adjunction (see below) ensures that there is a unique extension of the action map $A \to \operatorname{End}_{\mathbf{Ab}}(M)$ along $A \hookrightarrow \operatorname{for} \circ F(A)$ to an action map $F(A) \to \operatorname{End}_{\mathbf{Ab}}(M)$. This induces an equivalence $A\text{-}\mathbf{Mod} \simeq F(A)\text{-}\mathbf{Mod},$ so that one may as well study $F(A)$ if one wanted to study $A$ through its module category. \end{remark} \begin{remark} \label{}\hypertarget{}{} Similar [[unitisation]] prescriptions work for non-commutative rings and for [[nonunital algebras]] over a fixed base ring, see also at \begin{itemize}% \item \emph{[[unitisation of C\emph{-algebras]]\_.}} \end{itemize} \end{remark} \begin{prop} \label{}\hypertarget{}{} Unitisation in def. \ref{Unitisation} extends to a [[functor]] from $CRng$ to [[CRing]] which is [[left adjoint]] to the [[forgetful functor]] from [[commutative rings]] to non-unital commutative rings. \begin{displaymath} F \colon CRng \leftrightarrow CRing \colon U \,. \end{displaymath} \end{prop} \begin{proof} This is because the definition of any ring [[homomorphism]] out of $F(A)= (\mathbb{Z} \oplus A, \cdot)$ is uniquely fixed on the $\mathbb{Z}$-summand. \end{proof} \hypertarget{AsSlicesOfRings}{}\subsubsection*{{Nonunital rings as slices of rings}}\label{AsSlicesOfRings} \begin{defn} \label{AugmentationIdealFunctor}\hypertarget{AugmentationIdealFunctor}{} Write $CRing_{/\mathbb{Z}}$ for the [[slice category]] of [[CRing]] over the ring of [[integers]] ([[augmented algebra|augmented commutative rings]]). Write \begin{displaymath} CRing_{/\mathbb{Z}} \longrightarrow CRng \end{displaymath} for the [[functor]] to commutative non-unital rings which sends any $(R \stackrel{\phi}{\to} \mathbb{Z})$ to its \emph{[[augmentation ideal]]}, hence to the [[kernel]] of $\phi$ \begin{displaymath} (R \stackrel{\phi}{\to} \mathbb{Z}) \mapsto ker(\phi) \,. \end{displaymath} \end{defn} \begin{defn} \label{EquivalenceOfNonunitalAndSliced}\hypertarget{EquivalenceOfNonunitalAndSliced}{} The [[augmentation ideal]]-functor in def. \ref{AugmentationIdealFunctor} is an [[equivalence of categories]] whose inverse is given by [[unitisation]], def. \ref{Unitisation}, remembering the [[projection]] $(\mathbb{Z} \oplus A) \to \mathbb{Z}$: \begin{displaymath} CRng \simeq CRing_{/\mathbb{Z}} \,. \end{displaymath} \end{defn} \begin{proof} That the functor is [[fully faithful]] is to observe that for a ring $R \stackrel{\phi}{\to} \mathbb{Z}$ the [[fiber]] $R_{n}$ over $n \in \mathbb{Z}$ is a [[torsor]] over the additive group underlying the [[augmentation ideal]] $A = R_0 = ker(\phi)$, and moreover it is a pointed torsor, the point being $n$ itself, hence is canonically equivalent to the [[augmentation ideal]] $A$, the equivalence being addition by $n$ in $R$. Hence any homomrphism of rings with identity over $\mathbb{Z}$ \begin{displaymath} \itexarray{ R_1 && \stackrel{f}{\longrightarrow} && R_2 \\ & {}_{\mathllap{\phi_1}}\searrow && \swarrow_{\mathrlap{\phi_2}} \\ && \mathbb{Z} } \end{displaymath} is uniquely fixed by its restriction to the augmentation ideal $ker(\phi_1)$, whose image, moreover, has to be in the augmentation ideal $ker(\phi_2)$. \end{proof} The identification of non-unital algebras as augmentation ideals of augmented unital algebras is used for instance in (\hyperlink{Fresse06}{Fresse 06}). \begin{remark} \label{}\hypertarget{}{} In terms of [[arithmetic geometry]], the [[Isbell duality|formally dual]] statement of prop. \ref{AugmentationIdealFunctor} is that arithmetic geometry induced by non-unital rings is equivalently ordinary arithmetic geometry \emph{under} [[Spec(Z)]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} The generalization of prop. \ref{EquivalenceOfNonunitalAndSliced} to [[nonunital Ek-algebras]] is (\hyperlink{Lurie}{Lurie, prop. 5.2.3.15}). \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[unitisation of C\emph{-algebras]]} \item [[noncommutative ring]], [[nonassociative ring]] \item [[rig]] \item [[nonunital Ek-algebra]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{ReferencesTheory}{}\subsubsection*{{Nonunital ring theory}}\label{ReferencesTheory} The terminology ``rng'' originates in \begin{itemize}% \item Nathan Jacobson \emph{Basic Algebra}. \end{itemize} A survey of commutative rng theory is in \begin{itemize}% \item D. Anderson, \emph{Commutative rngs}, in J. Brewer et al. (eds.) \emph{Multiplicative ideal theory in Commutative Algebra}, 2006 \end{itemize} Discussion of [[module]] theory over rngs (with close relation to [[torsion modules]]) is in \begin{itemize}% \item [[Daniel Quillen]], \emph{Module theory over nonunital rings}, August 1996 ([[QuillenModulesOverRngs.pdf:file]]) \end{itemize} Discussion of non-unital rings as [[augmentation ideals]] of augmented unital rings includes \begin{itemize}% \item [[Benoit Fresse]], \emph{The Bar Complex of an E-infinity Algebra}, Adv. Math. 223 (2010), pages 2049-2096 (\href{http://arxiv.org/abs/math/0601085}{arXiv:math/0601085}) \end{itemize} A definition of [[algebraic K-theory]] for nonunital rings is due to \begin{itemize}% \item [[Daniel Quillen]], \emph{$K_0$ for nonunital rings and Morita invariance}, J. Reine Angew. Math., 472:197-217, 1996. \end{itemize} with further developments (in [[KK-theory]]) including \begin{itemize}% \item [[Snigdhayan Mahanta]], \emph{Higher nonunital Quillen K'-theory, KK-dualities and applications to topological T-dualities}, J. Geom. Phys., 61 (5), 875-889, 2011. (\href{http://wwwmath.uni-muenster.de/u/snigdhayan.mahanta/papers/KQ.pdf}{pdf}) \end{itemize} Discussion in the context of [[higher algebra]] ([[nonunital Ek-algebras]]) is in \begin{itemize}% \item [[Jacob Lurie]], section 5.2.3 of \emph{[[Higher Algebra]]} \end{itemize} [[!redirects rng]] [[!redirects rngs]] [[!redirects nonunital ring]] [[!redirects nonunital rings]] [[!redirects non-unital ring]] [[!redirects non-unital rings]] [[!redirects unitization of a ring]] [[!redirects unitization of rings]] [[!redirects unitizations of rings]] [[!redirects unitisation of a ring]] [[!redirects unitisation of rings]] [[!redirects unitisations of rings]] [[!redirects unitization of a commutative ring]] [[!redirects unitization of commutative rings]] [[!redirects unitizations of commutative rings]] [[!redirects unitisation of a commutative ring]] [[!redirects unitisation of commutative rings]] [[!redirects unitisations of commutative rings]] \end{document}