\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{norm} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{analysis}{}\paragraph*{{Analysis}}\label{analysis} [[!include analysis - contents]] \hypertarget{analytic_geometry}{}\paragraph*{{Analytic geometry}}\label{analytic_geometry} [[!include analytic geometry -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{on_an_abelian_group}{On an abelian group}\dotfill \pageref*{on_an_abelian_group} \linebreak \noindent\hyperlink{on_a_vector_space}{On a vector space}\dotfill \pageref*{on_a_vector_space} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{minkowski_functionals}{Minkowski Functionals}\dotfill \pageref*{minkowski_functionals} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{dreamUnique}{Uniqueness}\dotfill \pageref*{dreamUnique} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{on_an_abelian_group}{}\subsubsection*{{On an abelian group}}\label{on_an_abelian_group} For $(A,+)$ an [[abelian group]], then a \emph{norm} on the group is a [[function]] \begin{displaymath} {\vert-\vert} \;\colon\; G \longrightarrow \mathbb{R} \end{displaymath} to the [[real numbers]], such that \begin{enumerate}% \item (positivity) $(g \neq 0) \Rightarrow (\vert g\vert \gt 0)$ \item ([[triangle inequality]]) ${\vert g + h\vert}\leq {\vert g\vert} + {\vert h\vert}$ \item (linearity) ${\vert k g\vert} = {\vert k\vert} {\vert g\vert}$ for all $k \in \mathbb{Z}$. \end{enumerate} Here ${\vert k\vert} \in \mathbb{N}$ denotes the [[absolute value]]. A group with a norm is a \emph{[[normed group]]}, see there for more. \hypertarget{on_a_vector_space}{}\subsubsection*{{On a vector space}}\label{on_a_vector_space} For $k$ a [[field]] equipped with a [[valuation]] (most usually, a [[local field]] such as $\mathbb{R}$, $\mathbb{C}$, or a [[p-adic field|p-adic]] [[complete field|completion]] of a [[number field]]), a \textbf{norm} on a $k$-[[vector space]] $V$ is a [[function]] \begin{displaymath} {\vert-\vert} \colon V \to \mathbb{R} \end{displaymath} such that for all $\lambda \in k$, $v,w \in V$ we have \begin{enumerate}% \item ${\vert \lambda v \vert} = {\vert \lambda\vert} {\vert v \vert}$ (where $\vert \lambda \vert$ denotes the [[valuation]]) \item ${\vert v + w\vert } \leq {\vert v \vert } + {\vert w \vert}$ (``[[triangle inequality]]'') \item if ${\vert v\vert} = 0$ then $v = 0$. \end{enumerate} If the third property is not required, one speaks of a \textbf{seminorm}. If the triangle identity is strengthened to \begin{itemize}% \item ${\vert v + w\vert } \leq max ({\vert v\vert}, {\vert w\vert})$ \end{itemize} one speaks of a \textbf{[[non-archimedean]]} seminorm, otherwise of an [[archimedean]] one. A vector space equipped with a norm is a \textbf{normed vector space}. A vector of norm 1 is a [[unit vector]]. Each seminorm determines a [[topology]], which is [[Hausdorff space|Hausdorff]] precisely if it is a norm. A [[topological vector space]] is called \textbf{(semi-)normed} if its [[topology]] can be induced by a (semi-)norm. Two seminorms ${\vert - \vert}_1$ and ${\vert - \vert}_2$ are called \textbf{equivalent} if there are $0 \lt C, C' \in \mathbb{R}$ such that for all $v$ we have \begin{displaymath} C {\vert v \vert}_1 \leq {\vert v \vert}_2 \leq C' {\vert v \vert}_1 \,. \end{displaymath} Equivalent seminorms determine the same [[topology]]. The collection of (bounded) multiplicative seminorms on a ([[Banach space|Banach]]) [[ring]] is called its [[analytic spectrum]] (see there for details). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item The standard [[absolute value]] is a norm on the [[real numbers]]. \item More generally, on any [[Cartesian space]] $\mathbb{R}^n$ the \textbf{Euclidean norm} is given by \begin{displaymath} \vert \vec x\vert \;\coloneqq\; \sqrt{ \underoverset{i = 1}{n}{\sum} (x_i)^2 } \,. \end{displaymath} \end{itemize} \begin{enumerate}% \item more generally, for $n \in \mathbb{N}$, and $p \in \mathbb{N}$, $p \geq 1$, then the [[Cartesian space]] $\mathbb{R}^n$ carries the \emph{[[p-norm]]} \begin{displaymath} {\vert \vec x \vert}_p \coloneqq \root p {\sum_i {|x_i|^p}} \end{displaymath} \item The [[p-norm]] generalizes to [[sequence spaces]] and [[Lebesgue spaces]]. \end{enumerate} \hypertarget{minkowski_functionals}{}\subsubsection*{{Minkowski Functionals}}\label{minkowski_functionals} Let $V$ be a vector space and $B \subseteq V$ an [[absorbing]] [[absolutely convex]] subset. The \textbf{Minkowski functional} of $B$ is the function $\mu_B \colon V \to \mathbb{R}$ defined by: \begin{displaymath} \mu_B(v) = \inf\{t \gt 0 : v \in t B\} \end{displaymath} This is a semi-norm on $V$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item [[Hahn-Banach theorem]] \end{itemize} The (open or closed) [[unit ball]] of a seminormed vector space is a [[convex set]], a [[balanced set]] and an [[absorbing set]]. The first two of these properties make the unit ball (or even any ball of positive radius) an [[absolutely convex set]]. \hypertarget{dreamUnique}{}\subsubsection*{{Uniqueness}}\label{dreamUnique} In [[dream mathematics]], a given real [[vector space]] (with no topological structure) can have at most one complete norm, up to topological equivalence ([[homeomorphism]] of the [[identity function]]). It can have multiple inequivalent complete seminorms and incomplete norms, but their Hausdorff quotients and completions must be different. For example, the various [[Lebesgue norms]] on a [[Cartesian space]] $\mathbb{R}^n$ for finite $n$ are complete and equivalent; on $\mathbb{R}^\infty$, they are inequivalent but incomplete. As dream mathematics includes [[excluded middle]] and [[dependent choice]], the existence of inequivalent complete norms on a given vector space cannot be proved without a stronger form of the [[axiom of choice]], enough to disprove the [[Baire property]] (which is the only classically false axiom needed in the proof of uniqueness). In \emph{[[HAF]]}, it is argued that this explains why, in [[applied mathematics]], there tends to be only one norm considered on any particular vector space (after Hausdorff completion). This theorem applies more generally to [[F-norms]] but not to [[G-norms]] (even on a real vector space). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[metric]] \item [[quotient norm]] \item [[F-norm]], [[G-norm]] \item in [[representation theory]]: [[norm map]] \end{itemize} [[!include analytic geometry ingredients -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Normed_vector_space}{Normed vector space}} \item [[Siegfried Bosch]], [[Ulrich Güntzer]], [[Reinhold Remmert]], \emph{[[Non-Archimedean Analysis]] -- A systematic approach to rigid analytic geometry}, 1984 (\href{http://math.arizona.edu/~cais/scans/BGR-Non_Archimedean_Analysis.pdf}{pdf}) \item \emph{[[HAF]]}, \S{}27.47.b (for uniqueness in dream mathematics) \end{itemize} [[!redirects norms]] [[!redirects seminorm]] [[!redirects seminorms]] [[!redirects semi-norm]] [[!redirects semi-norms]] [[!redirects Minkowski functional]] [[!redirects Minkowski functionals]] [[!redirects normed vector space]] [[!redirects normed vector spaces]] [[!redirects normed vector space]] [[!redirects normed vector spaces]] [[!redirects normable vector space]] [[!redirects normable vector spaces]] [[!redirects pseudonormed vector space]] [[!redirects pseudonormed vector spaces]] [[!redirects seminormed vector space]] [[!redirects seminormed vector spaces]] [[!redirects normed space]] [[!redirects normed spaces]] [[!redirects normable space]] [[!redirects normable spaces]] [[!redirects pseudonormed space]] [[!redirects pseudonormed spaces]] [[!redirects seminormed space]] [[!redirects seminormed spaces]] [[!redirects vector measure]] [[!redirects vector measures]] \end{document}