\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{normed division algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{normed_division_algebras}{}\section*{{Normed division algebras}}\label{normed_division_algebras} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Classification}{Classification}\dotfill \pageref*{Classification} \linebreak \noindent\hyperlink{Automorphisms}{Automorphisms}\dotfill \pageref*{Automorphisms} \linebreak \noindent\hyperlink{relation_to_hspace_structures_on_sphere_hopf_invariant_one}{Relation to H-space structures on sphere (Hopf invariant one)}\dotfill \pageref*{relation_to_hspace_structures_on_sphere_hopf_invariant_one} \linebreak \noindent\hyperlink{magic_square}{Magic square}\dotfill \pageref*{magic_square} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A normed division algebra is a [[not-necessarily associative algebra]], over some [[ground field]], that is \begin{enumerate}% \item a [[division algebra]] $\big( \text{i.e.}\, (a \cdot b = 0) \Rightarrow (a = 0 \,\text{or}\, b = 0) \big)$ \item a multiplicatively [[normed algebra]] $\big( \text{i.e.}\, {\Vert a \cdot b\Vert} \leq C \cdot {\Vert a\Vert} \cdot {\Vert b\Vert} \big)$. \end{enumerate} It should be the case (at least maybe for finite-dimensional algebras) that the division property (1) implies that the norm property (2) holds in the stronger form \begin{displaymath} {\vert a \cdot b\vert} \;=\; {\vert a \vert} \cdot {\vert b \vert} \end{displaymath} and this is how most (or all) authors actually define normed division algebras, and that's what we assume to be meant now. $\,$ It turns out ([[Hurwitz' theorem]]) that over the [[real numbers]] there are precisely only four normed division algebras up to [[isomorphism]]: the algebras of \begin{enumerate}% \item [[real numbers]], \item [[complex numbers]], \item [[quaternions]], \item [[octonions]]. \end{enumerate} In this sense real normed division algebras may be thought of as a natural generalization of the [[real numbers]] and the [[complex numbers]]. Moreover, if one regards the [[real numbers]] as a [[star-algebra]] with trivial [[anti-involution]], then each step in the above sequence is given by applying the [[Cayley-Dickson construction]]. (While the process of applying the [[Cayley-Dickson construction]] continues, next with the[[sedenions]], these and the following are no longer [[division algebras]].) This classification of real normed division algebras is closely related to various other systems of [[universal exceptionalism|exceptional]] structures in [[mathematics]] and [[physics]]: \begin{itemize}% \item The \emph{[[Hopf invariant one theorem]]} says that the only [[continuous functions]] between [[spheres]] of the form $S^{2n-1}\to S^n$ whose [[Hopf invariant]] is equal to 1 are the [[Hopf constructions]] on the four real normed division algebras, namely \begin{enumerate}% \item the [[real Hopf fibration]]; \item the [[complex Hopf fibration]]; \item the [[quaternionic Hopf fibration]]; \item the [[octonionic Hopf fibration]]. \end{enumerate} \item Patterns related to [[Majorana spinors]] in [[spin geometry]] are intimately related to the four normed division algebras, and, induced by this, so is the classification of \emph{[[supersymmetry]]} in the form of [[super Poincaré Lie algebras]] and [[super Minkowski spacetimes]] (which are built from these real spin representations). For more on this see at \emph{[[supersymmetry and division algebras]]}. \end{itemize} (Moreover, apparently these two items are not unrelated, see [[schreiber:Equivariant cohomology of M2/M5-branes|here]].) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{normed division algebra} is \begin{itemize}% \item a [[division algebra]]; \item that is also a [[Banach algebra]]. \end{itemize} While the [[norm]] in a [[Banach algebra]] is in general only submultiplicative (${\|x y\|} \leq {\|x\|} {\|y\|}$), the norm in a normed division algebra must be multiplicative (${\|x y\|} = {\|x\|} {\|y\|}$). Accordingly, this norm is considered to be an [[absolute value]] and often written ${|{-}|}$ instead of ${\|{-}\|}$. There is also a converse: if the norm on a Banach algebra is multiplicative (including ${\|1\|} = 1$), then it must be a division algebra. While the term `normed division algebra' does not seem to include the [[complete space|completeness]] condition of a Banach algebra, in fact the only examples have finite [[dimension]] and are therefore complete. Accordingly, a normed division algebras is in particular a division [[composition algebra]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Classification}{}\subsubsection*{{Classification}}\label{Classification} Over the [[complex numbers]], [[generalized the|the]] only normed division algebra is the algebra of complex numbers themselves. The [[Hurwitz theorem]] says that over the [[real numbers]] there are, up to [[isomorphism]], exactly four finite-dimensonal normed division algebras : \begin{itemize}% \item $\mathbb{R}$, the algebra of [[real numbers]], \item $\mathbb{C}$, the algebra of [[complex numbers]], \item $\mathbb{H}$, the algebra of [[quaternions]], \item $\mathbb{O}$, the algebra of [[octonions]]. \end{itemize} In fact these are also exactly the real [[alternative algebra|alternative]] division algebras: \begin{prop} \label{ZornTheorem}\hypertarget{ZornTheorem}{} The only [[division algebras]] over the [[real numbers]] which are also [[alternative algebras]] are the [[real numbers]] themselves, the [[complex numbers]], the [[quaternions]] and the [[octonions]]. \end{prop} (\hyperlink{Zorn30}{Zorn 30}). Each of these is produced from the previous one by the [[Cayley–Dickson construction]]; when applied to $\mathbb{O}$, this construction produces the algebra of [[sedenions]], which do \emph{not} form a division algebra. The Cayley--Dickson construction applies to an algebra with [[involution]]; by the abstract nonsense of that construction, we can see that the four normed division algebras above have these properties: \begin{itemize}% \item $\mathbb{R}$ is [[associative algebra|associative]], [[commutative algebra|commutative]], and with trivial involution, \item $\mathbb{C}$ is associative and commutative but has nontrivial involution, \item $\mathbb{H}$ is associative but noncommutative and with nontrivial involution, \item $\mathbb{O}$ is neither associative, commutative, nor with trivial involution. \end{itemize} However, these algebras do all have some useful algebraic properties; in particular, they are all [[alternative algebra|alternative]] (a weak version of associativity). They are also all [[composition algebra]]s. A \textbf{[[normed field]]} is a commutative normed division algebra; it follows from the preceding that the only normed fields over $\mathbb{R}$ are $\mathbb{R}$ and $\mathbb{C}$ (e.g. \hyperlink{Tornheim52}{Tornheim 52}). It is in fact true that all \emph{unital} normed division algebras over $\mathbb{R}$ are already finite dimensional, by (\hyperlink{UrbanikWright60}{Urbanik-Wright 1960}) (the authors give a reference on a non-unital infinite-dimensional normed division algebra). Hence the [[Hurwitz theorem]] together with \hyperlink{UrbanikWright60}{Urbanik-Wright 1960} says that the above four exhaust all real normed division algebras. For purely inseparable characteristic 2 field extensions one can apparently get infinite-dimensional examples; see \href{http://mathoverflow.net/a/45655/4177}{this MathOverflow answer} for reference. \hypertarget{Automorphisms}{}\subsubsection*{{Automorphisms}}\label{Automorphisms} The [[automorphism groups]] of the real normed division algebras, as [[normed algebras]], are \begin{itemize}% \item $Aut(\mathbb{R}) = 1$, the [[trivial group]] \item $Aut(\mathbb{C}) = \mathbb{Z}/2$ the [[group of order 2]], acting by [[complex conjugation]]; \item $Aut(\mathbb{H}) = SO(3)$, the [[special orthogonal group]] acting via its canonical representation on the 3-dimensional space of imaginary quaternions; \item $Aut(\mathbb{O}) = G_2$, the [[exceptional Lie group]] [[G2]]. \end{itemize} Incidentally, there is a sense in which this sequence of groups continues, with the [[infinity-group]] [[G3]] (the [[Dwyer-Wilkerson H-space]]): \begin{tabular}{l|l|l|l|l|l} $n=$&0&1&2&3&4\\ \hline $DI(n)=$&[[trivial group&1]]&[[Z/2]]&[[SO(3)]]&[[G2]]\\ &= Aut(R)&\href{complex+number#AutomorphismsOfComplexNumbersIsZ2}{= Aut(C)}&\href{quaternion#AutomorphismsOfQUatrnionsAlgebraIsSO3}{= Aut(H)}&\href{octonion#AutomorphismsOfOctonionAlgebraIsG2}{= Aut(O)}&\\ \end{tabular} \hypertarget{relation_to_hspace_structures_on_sphere_hopf_invariant_one}{}\subsubsection*{{Relation to H-space structures on sphere (Hopf invariant one)}}\label{relation_to_hspace_structures_on_sphere_hopf_invariant_one} The [[Hopf invariant one theorem]] says that the [[spheres]] carrying [[H-space]] structure are precisely the unit spheres in one of the normed division algebras (\href{Hopf+invariant+one#Adams60}{Adams 60}) \hypertarget{magic_square}{}\subsubsection*{{Magic square}}\label{magic_square} The [[Freudenthal magic square]] is a special square array of [[Lie algebras]]/[[Lie groups]] labeled by pairs of real normed division algebras and including all the [[exceptional Lie groups]] except [[G2]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hopf invariant one]] \item [[Cayley–Dickson construction]] \end{itemize} [[!include exceptional spinors and division algebras -- table]] see [[division algebra and supersymmetry]] [[!include normed division algebra Riemannian geometry -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The classification of real divsion composition algebras is originally due ([[Hurwitz theorem]]) to \begin{itemize}% \item [[Adolf Hurwitz]], \emph{\"U{}ber die Composition der quadratischen Formen von beliebig vielen Variabeln}, Nachr. Ges. Wiss. G\"o{}ttingen (1898) 309--316 \end{itemize} The alternative classification as real [[alternative algebra|alternative]] division algebras is due to \begin{itemize}% \item [[Max Zorn]], \emph{Theorie der alternativen Ringe}, Abhandlungen des Mathematischen Seminars der Universit\"a{}t Hamburg 8 (1930), 123-147 \end{itemize} General discussion includes includes \begin{itemize}% \item Leonard Tornheim, \emph{Normed fields over the real and complex fields}, Michigan Math. J. Volume 1, Issue 1 (1952), 61-68. (\href{http://projecteuclid.org/euclid.mmj/1028989727}{Euclid}) \item Silvio Aurora, \emph{On normed rings with monotone multiplication}, Pacific J. Math. Volume 33, Number 1 (1970), 15-20 (\href{http://projecteuclid.org/euclid.pjm/1102977236}{JSTOR}) \end{itemize} The result about removing the assumption of finite-dimensionality from unital normed division algebras appears in: \begin{itemize}% \item Kazimierz Urbanik and Fred B. Wright, \_ Absolute-valued algebras\_, Proc. Amer. Math. Soc. \textbf{11} (1960), 861-866, doi:\href{https://doi.org/10.1090/S0002-9939-1960-0120264-6}{10.1090/S0002-9939-1960-0120264-6} \end{itemize} Exposition with emphasis on the [[octonions]] is in \begin{itemize}% \item [[John Baez]], \emph{\href{http://math.ucr.edu/home/baez/octonions/node2.html}{Normed Division Algebras}} \item [[John Baez]], \href{http://math.ucr.edu/home/baez/week59.html}{This Week's Finds --- Week 59} \end{itemize} Discussion of [[Riemannian geometry]] and [[special holonomy]] modeled on the different normed division algebras is in \begin{itemize}% \item [[Naichung Conan Leung]], \emph{Riemannian Geometry Over Different Normed Division Algebras}, J. Differential Geom. Volume 61, Number 2 (2002), 289-333. (\href{http://projecteuclid.org/euclid.jdg/1090351387}{euclid}) \end{itemize} [[!redirects normed division algebra]] [[!redirects normed division algebras]] \end{document}