\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{nuclear space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{nuclear vector space} is a [[locally convex topological vector space]] that is as far from being a [[normed vector space]] as possible. Any map from a nuclear space into a [[normed vector space]] is compact, whence the only normed nuclear spaces are finite dimensional. Nuclear spaces have very good properties with regard to [[topological tensor product]]s and [[dual vector space|duality]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} To define a nuclear space we need to start with the concept of a nuclear map, first between [[Banach spaces]]. Let $E$ and $F$ be [[Banach spaces]]. Let $\mathcal{L}(E,F)$ be the Banach space of continuous linear maps $E \to F$. Let $E^*$ denote the dual Banach space of $E$. Let $E^* \widetilde{\otimes} F$ denote the completion of the [[projective tensor product]] of $E^*$ and $F$. The bilinear map $E^* \times F \to \mathcal{L}(E,F)$ extends to a continuous linear map $E^* \widetilde{\otimes} F \to \mathcal{L}(E,F)$ (which might not be injective). \begin{defn} \label{nnmap}\hypertarget{nnmap}{} Let $E$ and $F$ be Banach spaces. A linear map $f \colon E \to F$ is \textbf{nuclear} if it lies in the image in $\mathcal{L}(E,F)$ of the completion of the projective tensor product $E^* \widetilde{\otimes} F$. \end{defn} From the notion of nuclear maps between Banach spaces we can define nuclear maps between arbitrary [[LCTVS]]. In essence, a linear map between arbitrary LCTVS is nuclear if it factors through a nuclear map of Banach spaces. To make this precise, we need to recall how to associate Banach spaces to certain subsets of an LCTVS. Let $E$ be an LCTVS and $U \subseteq E$ a [[convex set|convex]] [[circled set|circled]] $0$-neighbourhood. Then we can define a Banach space $\widetilde{E}_U$ as follows: as $U$ is convex and circled, its [[Minkowski functional]] is a [[semi-norm]] on $E$. The quotient $E_U \coloneqq E/\ker U$ is therefore a [[normed vector space]]. As $U$ is a $0$-neighbourhood, the quotient mapping defines a continuous linear function $E \to E_U$. We define $\tilde{E}_U$ to be the Banach completion of $E_U$. There is a dual notion. Let $F$ be an LCTVS and $B \subseteq F$ a convex, circled, and [[bounded subset]] of $F$. Let $F_B$ be the span of $B$ in $F$. Then $B$ is [[absorbing]] in $F_B$ and so its Minkowski functional is defined. If $F$ is [[Hausdorff]] then $B$ cannot contain a linear subspace and thus $F_B$ is a normed vector space. We cannot complete $F_B$ to a Banach space but it might so happen that it is one. As $B$ is bounded, the inclusion $F_B \to F$ is continuous. (There is no danger of confusing the two notations since if $E$ admits a bounded $0$-neighbourhood then it is a normed vector space.) Now we say that a continuous linear map $f \colon E \to F$ is \textbf{bounded} if for some $0$-neighbourhood $U$ of $E$ (which we may take to be [[circled set|circled]] and [[convex set|convex]]), $f(U)$ is bounded in $F$. In which case, $f$ factors through a continuous map $f_{U,B} \colon E_U \to F_B$ where $B \subseteq F$ is bounded and contains $f(U)$. \begin{defn} \label{nmap}\hypertarget{nmap}{} Let $E$ and $F$ be LCTVS. A linear map $f \colon E \to F$ is \textbf{nuclear} if there exists a [[convex set|convex]] [[circled set|circled]] $0$-neighbourhood, say $U$, in $E$ and a [[convex set|convex]] [[circled set|circled]] [[bounded set|bounded]], say $B$, in $F$ with $F_B$ complete such that $f(U) \subseteq B$ and the associated map $f_{U,B} \colon \tilde{E}_U \to F_B$ is nuclear. \end{defn} The following characterisation of nuclear maps is often helpful. \begin{lemma} \label{nchar}\hypertarget{nchar}{} A linear map $f \colon E \to F$ is nuclear if and only if it is of the form: \begin{displaymath} u(x) = \sum_{n=1}^\infty \lambda_n f_n(x) y_n \end{displaymath} where $\sum_{n=1}^\infty {|\lambda_n|} \lt \infty$, $\{f_n\}$ is an [[equicontinuous]] sequence in $E^*$, and $\{y_n\}$ is a sequence in $F$ contained in a convex, circled, bounded subset $B$ such that $F_B$ is complete. \end{lemma} Now that we have the notion of a nuclear map, we can define a nuclear space. \begin{defn} \label{nsp}\hypertarget{nsp}{} A [[LCTVS]] $E$ is nuclear if it has a base $\mathcal{B}$ of convex circled $0$-neighbourhoods such that for $V \in \mathcal{B}$ the canonical mapping $E \to \tilde{E}_V$ is nuclear. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{enumerate}% \item The following are equivalent:\begin{enumerate}% \item $E$ is nuclear, \item Every continuous linear map of $E$ into any Banach space is nuclear, \item Every convex, circled $0$-neighbourhood $U$ contains another, say $V$, such that the canonical map $\tilde{E}_V \to \tilde{E}_U$ is nuclear. \end{enumerate} \item Every bounded subset of a nuclear space is precompact. \item The completion of a nuclear space is a nuclear space. \item A nuclear space is a projective limit of $\ell^p$ spaces (in particular, of [[Hilbert spaces]]). \item Nuclearity is inherited by the following constructions: subspaces, separated quotients, arbitrary products, locally convex direct sum of a countable family, projective limits, countable inductive limits. \item The [[projective tensor product]] (and its completion) of two nuclear spaces is nuclear. \end{enumerate} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{enumerate}% \item Any finite dimensional vector space is nuclear, \item For a finite dimensional smooth manifold $M$, $C^\infty(M)$ is nuclear, \item The space of rapidly decreasing functions on $\mathbb{R}^n$ is nuclear, \item The product an arbitrary number of copies of $\mathbb{R}$ is nuclear, \item The direct sum of a countable number of copies of $\mathbb{R}$ is nuclear, \item The direct sum of $\mathbb{R}$-copies of $\mathbb{R}$ is \emph{not} nuclear. \end{enumerate} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item A. Grothendieck, \emph{Produits tensoriels topologiques et espaces nucl\'e{}aires}, Memoirs of the Amer. Math. Soc. \textbf{16}, 190 pp. and 140 pp. (1955). \item [[Alexander Grothendieck]], \emph{R\'e{}sum\'e{} des r\'e{}sultats essentiels dans la th\'e{}orie des produits tensoriels topologiques et des espaces nucl\'e{}aires}, Annales de l'institut Fourier \textbf{4} (1952), p. 73-112, \href{http://www.numdam.org/item?id=AIF_1952__4__73_0}{numdam} \end{itemize} category: functional analysis [[!redirects Nuclear space]] [[!redirects nuclear space]] [[!redirects nuclear spaces]] [[!redirects nuclear vector space]] [[!redirects nuclear vector spaces]] [[!redirects nuclear topological vector space]] [[!redirects nuclear topological vector spaces]] \end{document}